AFTERNOTES ON NUMERICAL ANALYSIS

Being a series of lectures on elementary numerical analysis
presented at the University of Maryland at College Park
and recorded after the fact by

G. W. STEWART

Univerity of Maryland
College Park, MD

Contents

Preface ix
Nonlinear Equations 1
Lecture 1 o L e 3
By the dawn’s early light 3
Interval bisection oo oL 4
Relative error Lo oo 7
Lecture 2 e e e e e 9
Newton’s methodo oL 9
Reciprocals and square roots 11
Local convergence analysis 12
Slow death Lo . 14
Lecture 3 oL 17
A quasi-Newton method 17
Rates of convergenceo 20
Iterating for a fixed point 21
Multiplezeroso 24
Ending with a proposition o000 25
Lecture 4 e e 27
The secant method oo 27
Convergenceo e e e e 29
Rate of convergence oo 31
Multipoint methodso, 33
Muller’s method Lo 33

The linear-fractional method 34
Lecture 5 o e 37
A hybrid method Lo oo 37
Errors, accuracy, and condition numbers 40
Floating-Point Arithmetic 43
Lecture 6 e e e 45
Floating-point numbers 45
Overflow and underflow 47
Rounding error o 48
Floating-point arithmetic 49
Lecture 7 o 53
Computing sumso e 53
Backward error analysis 0oL 55
Perturbation analysiso 57
Cheap and chippy chopping 58
Lecture 8 L 61

vi Afternotes on Numerical Analysis

Cancellation Lo o o 61

The quadratic equation 61
That fatal bit of rounding error 63
Envoi e 65
Linear Equations 67
Lecture 9 oL 69
Matrices, vectors, and scalars 69
Operations with matrices 70
Rank-one matrices L o oL 73
Partitioned matrices Lo oL 74
Lecture 10 o L o i
The theory of linear systems i
Computational generalities 78
Triangular systems 0oL, 79
Operationcounts, 81
Lecture 11 e e 83
Memory considerations00 83
Row-oriented algorithms 83

A column-oriented algorithm, . 84
General observations on row and column orientation 86
Basic linear algebra subprograms 86
Lecture 12 o Lo 89
Positive-definite matriceso oL 89

The Cholesky decomposition 90
Economicso 94
Lecture 13 e 97
Inner-product form of the Cholesky algorithm 97
Gaussian eliminationo oo oL, 98
Lecture 14 o Lo 103
Pivoting L 103
BLAS . . . 108
Upper Hessenberg and tridiagonal systems 110
Lecture 15 L e 113
Vector norms L Lo 113
Matrix normso Lo e e e 114
Relativeerroro 115
Sensitivity of linear systems 116
Lecture 16 L e e e 119
The condition of a linear system 119
Artificial ill-conditioning oL Lo 120
Rounding error and Gaussian elimination 122

Comments on the error analysis 125

Contents vii

Lecture 17 o o 127
Introduction to a project 127
MoOre on Nnorms v v v i e e e e e e e 127
The wonderful residual L. 128
Matrices with known condition numbers 129
Invert and multiply oL 130
Cramer’srule 130
Submissiono L e 131

Polynomial Interpolation 133

Lecture 18 L e 135
Quadratic interpolation o o000 oL, 135
Shifting 136
Polynomial interpolation 0oL 137
Lagrange polynomials and existence 137
Uniqueness o e 138

Lecture 19 L e 141
Synthetic division oL o Lo, 141
The Newton form of the interpolant 142
Evaluation L oo 142
Existence and uniqueness oL 143
Divided differenceso oo 144

Lecture 20 L 147
Error in interpolationo oo 147
Errorbounds e 149
Convergenceo e e e e e 150
Chebyshev points oo, 151

Numerical Integration 155

Lecture 21 o L e 157
Numerical integration 157
Change of intervals 158
The trapezoidalrule 158
The composite trapezoidal rule 160
Newton—Cotes formulas 161
Undetermined coefficients and Simpson’srule 162

Lecture 22 oL 165
The Composite Simpsonrule 165
Errors in Simpson’sruleo oL L. 166
Treatment of singularities 167
Gaussian quadrature: The idea 169

Lecture 23 L e 171

Gaussian quadrature: The setting 171

viii

Afternotes on Numerical Analysis

Orthogonal polynomials, 171
Existence L 173

Zeros of orthogonal polynomials 174
Gaussian quadratureo oo 175

Error and convergence 176
Examples L 176
Numerical Differentiation 179
Lecture 24 L e 181
Numerical differentiation and integration. 181
Formulas from power series 182
Limitations oL o 184
Bibliography 187
Introduction Lo 187
References Lo 187

Index 191

Preface

In the spring of 1993, I took my turn at teaching our upper-division course
in introductory numerical analysis. The topics covered were nonlinear equa-
tions, computer arithmetic, linear equations, polynomial interpolation, numer-
ical integration, and numerical differentiation. The continuation of the course
is a sequence of two graduate courses, which offer a selection of complementary
topics. I taught Tuesday-Thursday classes of eighty-five minutes.

The textbook was Numerical Analysis by David Kincaid and Ward Cheney.
However, I usually treat textbooks as supplemental references and seldom look
at them while I am preparing lectures. The practice has the advantage of
giving students two views of the subject. But in the end all T have is a handful
of sketchy notes and vague recollections of what I said in class.

To find out what I was actually teaching I decided to write down each
lecture immediately after it was given while it was still fresh in my mind. 1
call the results afternotes. If I had known what I was letting myself in for,
I would have never undertaken the job. Writing to any kind of deadline is
difficult; writing to a self-imposed deadline is torture. Yet now I'm glad I did
it. I learned a lot about the anatomy of a numerical analysis course.

I also had an ulterior motive. Most numerical analysis books, through no
fault of their authors, are a bit ponderous. The reason is they serve too many
masters. They must instruct the student (and sometimes the teacher). They
must also contain enough topics to allow the instructor to select his or her
favorites. In addition, many authors feel that their books should be references
that students can take with them into the real world. Now there are various
ways to combine these functions in a single book — and they all slow down the
exposition. In writing these afternotes, I was curious to see if I could give the
subject some narrative drive by screwing down on the focus. You will have to
judge how well I have succeeded.

So what you have here is a replica of what I said in class. Not a slavish
replica. The blackboard and the printed page are different instruments and
must be handled accordingly. I corrected errors, big and small, whenever 1
found them. Moreover, when I saw better ways of explaining things, I did not
hesitate to rework what I had originally presented. Still, the correspondence
is close, and each section of the notes represents about a class period’s worth
of talking.

In making these notes available, I hope that they will be a useful supple-
ment for people taking a numerical course or studying a conventional textbook
on their own. They may also be a source of ideas for someone teaching nu-
merical analysis for the first time. To increase their utility I have appended a
brief bibliography.

The notes were originally distributed over the Internet, and they have
benefited from the feedback. I would like to thank Stu Antman, Rogerio Brito,

ix

b'e Afternotes on Numerical Analysis

John Carroll, Bob Funderlic, David Goldberg, Murli Gupta, Nick Higham,
Walter Hoffman, Keith Lindsay, Dean Schulze, and Larry Shampine for their
comments. I am also indebted to the people at STAM who saw the notes
through production: to Vickie Kearn for resurrecting them from the oblivion
of my class directory, to Jean Anderson for a painstaking job of copy editing,
and to Corey Gray for an elegant design.

Above all I owe one to my wife, Astrid Schmidt-Nielsen, who was a patient
and encouraging workstation widow throughout the writing of these notes.
They are dedicated to her.

G. W. Stewart
College Park, MD

e Nonlinear Equations

Lecture 1

Nonlinear Equations

By the Dawn’s Early Light
Interval Bisection
Relative Error

By the dawn’s early light

1. For a simple example of a nonlinear equation, consider the problem of
aiming a cannon to hit a target at distance d. The cannon is assumed to have
muzzle velocity Vy and elevation 6.

To determine how far the cannon ball travels, note that the vertical compo-
nent of the muzzle velocity is Vj sinf. Since the ball is moving vertically against
the acceleration of gravity g, its vertical position y(t) satisfies the differential
equation

ey y(0) =0,
vy =-9, {y'(O) = Vpsiné.
The solution is easily seen to be
. I,
y(t) = Votsind — §gt .

Thus the ball will hit the ground at time

. 2V0 sin 0
79 .

T

Since the horizontal component of the velocity is Vj cos 8, the ball will travel a
distance of T'Vj cos 6. Thus to find the elevation we have to solve the equation

2V# cosfsing
g

d,

or equivalently
_ 2V cosfsinf

g

f(6) d=0. (1.1)
2. Equation (1.1) exhibits a number of features associated with nonlinear
equations. Here is a list.

® The equation is an idealization. For example, it does not take into account
the resistance of air. Again, the derivation assumes that the muzzle of the
cannon is level with the ground —something that is obviously not true. The
lesson is that when you are presented with a numerical problem in the abstract

4 Afternotes on Numerical Analysis

it is usually a good idea to ask about where it came from before working hard
to solve it.

® The equation may not have a solution. Since cos 8 sinf assumes a maximum
of % at 6 = 7, there will be no solution if
‘/02

d>—.
g

® Solutions, when they exist, are not unique. If there is one solution, then there
are infinitely many, since sin and cos are periodic. These solutions represent
a rotation of the cannon elevation through a full circle. Any resolution of the
problem has to take these spurious solutions into account.

 If d < V?/4g, and 6, < % is a solution, then — 6, is also a solution. Both
solutions are meaningful, but as far as the gunner is concerned, one may be
preferable to the other. You should find out which.

® The function f is simple enough to be differentiated. Hence we can use a
method like Newton’s method.

e Infact, (1.1) can be solved directly. Just use the relation 2 sin 6 cos § = sin 26.
It is rare for things to turn out this nicely, but you should try to simplify before
looking for numerical solutions.

e If we make the model more realistic, say by including air resistance, we may
end up with a set of differential equations that can only be solved numerically.
In this case, analytic derivatives will not be available, and one must use a
method that does not require derivatives, such as a quasi-Newton method

(53.1).

Interval bisection

3. In practice, a gunner may determine the range by trial and error, raising and
lowering the cannon until the target is obliterated. The numerical analogue
of this process is interval bisection. From here on we will consider the general
problem of solving the equation

f(z)=0. (1.2)

4. The theorem underlying the bisection method is called the intermediate
value theorem.

If f is continuous on [a,b] and g lies between f(a) and f(b), then
there is a point z € [a, b] such that g = f(z).

1. Nonlinear Equations)

5. The intermediate value theorem can be used to establish the existence of a
solution of (1.2). Specifically if sign[f(a)] # sign[f(b)], then zero lies between
f(a) and f(b). Consequently, there is a point z in [a, b] such that f(z) = 0.

6. We can turn this observation into an algorithm that brackets the root
in intervals of ever decreasing width. Specifically, suppose that sign[f(a)] #
sign[f(b)], and to avoid degeneracies suppose that neither f(a) nor f(b) is zero.
In this case, we will call the interval [a, b] a nontrivial bracket for a root of f.
Here, and always throughout these notes, [a,b] will denote the set of points
between a and b, inclusive, with no implication that a < b.

Now let ¢ = “T+b. There are three possibilities.

1. f(c) =0. In this case we have found a solution of (1.2).

2. f(c) # 0 and sign[f(c)] # sign[f(b)]. In this case [c,b] is a nontrivial
bracket.

3. f(c) # 0 and sign[f(a)] # sign[f(c)]- In this case [a, c| is a nontrivial
bracket.

Thus we either solve the problem or we end up with a nontrivial bracket that
is half the size of the original. The process can be repeated indefinitely, each
repetition either solving the problem or reducing the length of the bracket by
a factor of two. Figure 1.1 illustrates several iterations of this process. The
numbers following the letters a and b indicate at which iteration these points
were selected.

7. These considerations lead to the following algorithm. The input is a non-
trivial bracket [a,b] and the function values fa and fb at the endpoints. In
addition we need a stopping criterion eps > 0. The algorithm usually returns
a bracket of length not greater than eps. (For the exception see §1.9.)

while (abs(b-a) > eps){

c = (b+a)/2;

if (c==a || c==b)
return;

fc = £(c);

if (fc == 0){
a=b=c;
fa = fb = fc;
return;

(1.3)

sign(£fb))
fc;}

if (sign(fc) !
{a = c; fa
else
{b =c; fb

fc;}
}

return;

6 Afternotes on Numerical Analysis

| | | 1 |
I I I |
al a2 ad b3 bl

Figure 1.1. Interval bisection.

8. The hardest part about using the bisection algorithm is finding a bracket.
Once it is found, the algorithm is guaranteed to converge, provided the function
is continuous. Although later we shall encounter algorithms that converge
much faster, the bisection method converges steadily. If Ly = |b — a| is the
length of the original bracket, after k iterations the bracket has length

Since the algorithm will stop when Ly < eps, it will require
52 s
logy —

iterations to converge. Thus if Ly = 1 and eps = 105, the iteration will
require 20 iterations.

9. The statement

1. Nonlinear Equations 7

if (c==a || c==b)
return;

is a concession to the effects of rounding error. If eps is too small, it is possible
for the algorithm to arrive at the point where (a+b)/2 evaluates to either a or
b, after which the algorithm will loop indefinitely. In this case the algorithm,
having given its all, simply returns.!

Relative error

10. The convergence criterion used in (1.3) is based on absolute error; that is,
it measures the error in the result without regard to the size of the result. This
may or may not be satisfactory. For example, if eps = 107% and the zero in
question is approximately one, then the bisection routine will return roughly
six accurate digits. However, if the root is approximately 1077, we can expect
no figures of accuracy: the final bracket can actually contain zero.

11. If a certain number of significant digits are required, then a better measure
of error is relative error. Formally, if y is an approximation to x # 0, then the
relative error in y is the number

_ly—1
p= .
||

Alternatively, y has relative error p, if there is a number € with |e| = p such
that
y==z(l+e€).

12. The following table of approximations to e = 2.7182818. .. illustrates the
relation of relative error and significant digits.

Approximation p
2. 2.1071
2.7 6-1073
2.71 3-10°3
2.718 1-1074
2.7182 3.107°
2.71828 6-1077

An examination of this table suggests the following.

If x and y agree to k decimal digits, then the relative error in y will
be approximately 107%.

'Thanks to Urs von Matt for pointing this out.

8 Afternotes on Numerical Analysis

13. If we exclude tricky cases like z = 2.0000 and y = 1.9999, in which the
notion of agreement of significant digits is not well defined, the relation between
agreement and relative error is not difficult to establish. Let us suppose, say,
that x and y agree to six figures. Writing x above y, we have

* = X1X2X3X4X5XeX7Xsg,
Yy = Y1YoY3Y,Y5YeY,Ys.

Now since the digits X7 and Y; must disagree, the smallest difference between
z and y is obtained when, e.g.,

X7Xg = 40,
y7ys = 38.

Thus |z —y| > 2, which is a lower bound on the difference. On the other hand,
if X7 is nine while Y7 is zero, then |y — z| < 10, which is an upper bound. Thus

2 < |z —y| < 100.
Since 1 < X; <9, it is easy to see that
107 < |z| < 108,

Hence
ly — =

||

0.2-1077 < <107%;

i.e., the relative error is near 1076.

14. Returning to interval bisection, if we want a relative error of p in the
answer, we might replace the convergence criterion in the while statement
with

while(abs(b-a)/min(abs(a),abs(b)) > rho)

Note that this criterion is dangerous if the initial bracket straddles zero, since
the quantity min(abs(a) ,abs (b)) could approach zero.

Lecture 2

Nonlinear Equations

Newton’s Method
Reciprocals and Square Roots

Local Convergence Analysis
Slow Death

Newton’s method

1. Newton’s method is an iterative method for solving the nonlinear equation

f(z)=0. (2.1)

Like most iterative methods, it begins with a starting point ¢ and produces
successive approximations z1, x2, If z¢ is sufficiently near a root z, of (2.1),
the sequence of approximations will approach z,. Usually the convergence is
quite rapid, so that once the typical behavior of the method sets in, it requires
only a few iterations to produce a very accurate approximation to the root.
(The point z, is also called a zero of the function f. The distinction is that
equations have roots while functions have zeros.)

Newton’s method can be derived in two ways: geometrically and analyti-
cally. Each has its advantages, and we will treat each in turn.

2. The geometric approach is illustrated in Figure 2.1. The idea is to draw
a tangent to the curve y = f(z) at the point A = (zg, f(z)).- The abscissa
z1 of the point C = (z1,0) where the tangent intersects the axis is the new
approximation. As the figure suggests, it will often be a better approximation
to z, than x.

To derive a formula for z1, consider the distance BC from zg to z1, which
satisfies L

BA
tan ACB
But BA = f(z0) and tan ABC = — f/(z,) (remember the derivative is negative
at zp). Consequently,

f (o)

0 — .
f'(zo)

If the iteration is carried out once more, the result is point D in Figure 2.1. In

general, the iteration can be continued by defining

f(zx)

xk+1:xk_f/($k)7 =0,1,....

BC =

1 =T

10 Afternotes on Numerical Analysis

Figure 2.1. Geometric illustration of Newton’s method.

3. The analytic derivation of Newton’s method begins with the Taylor expan-
sion X
f(=) = f(wo) + f'(@o) (= — m0) + 5 ["(€0) (& — 20)*,

where as usual & lies between = and zy. Now if z is near the zero z, of f and
f'(zo) is not too large, then the function

F(@) = f(z0) + f'(z0) (= — =0)

provides a good approximation to f(z) in the neighborhood of z,. For example,
if [f"(z)] <1 and |z — 2| < 1072, then |f(z) — f(z)| < 10~%. In this case it is
reasonable to assume that the solution of the equation f (z) = 0 will provide a
good approximation to x,. But this solution is easily seen to be

_ f(=z0)
f'(wo)’

which is just the Newton iteration formula.

1 = Xy

2. Nonlinear Equations 11

4. In some sense the geometric and analytic derivations of Newton’s method
say the same thing, since y = f(z) is just the equation of the tangent line
AC in Figure 2.1. However, in other respects the approaches are complemen-
tary. For example, the geometric approach shows (informally) that Newton’s
method must converge for a function shaped like the graph in Figure 2.1 and
a starting point for which the function is positive. On the other hand the
analytic approach suggests fruitful generalizations. For example, if f’ does not
vary too much we might skip the evaluation of f'(zj) and iterate according to
the formula
f (@)

iL'k.f_]_:.’L'k—m, :1,2,.... (22)

Reciprocals and square roots

5. If a > 0, the function
1
f(@)=~—a

x

has the single positive zero z, = a'. If Newton’s method is applied to this
function, the result is the iteration

Ty = 2T) — azs. (2.3)

In fact, the graph in Figure 2.1 is just a graph of 2! — 0.5. Among other
things, it shows that the iteration will converge from any starting point 2o > 0
that is less than % Because the iteration requires no divisions, it has been

used as an alternative to hard-wired division in some computers.

6. Ifa > 0, the function
f@)=2"a

has the single positive zero z, = y/a. If Newton’s method is applied to this
function, the result is the iteration

1 a
= - +—. 24

TR (xk $k> 24)
This formula for approximating the square root was known to the Babyloni-
ans. Again, it is easy to see geometrically that if o > 4/a then the iteration
converges to 1/a.

7. Newton’s method does not have to converge. For example, if z(is too large
in the iteration (2.3) for the reciprocal, then z; will be less than zero and the
subsequent iterates will diverge to —oo.

12 Afternotes on Numerical Analysis

Local convergence analysis

8. We are going to show that if x(is sufficiently near a zero of z, of f and

.fl(‘x*) 7é O,

then Newton’s method converges — ultimately with great rapidity. To simplify
things, we will assume that f has derivatives of all orders. We will also set

@
(p(.’B) - f’(l‘)’

so that
Tp+1 = ¢(Tk)-
The function ¢ is called the iteration function for Newton’s method. Note that

)
#le) =00 =y = 7

Because x, is unaltered by ¢, it is called a fized point of .
Finally we will set
€ =T — Tx-

The quantity e is the error in z; as an approximation to z,. To say that
Tr — T4 is the same as saying that e — 0.

9. The local convergence analysis of Newton’s method is typical of many
convergence analyses. It proceeds in three steps.

1. Obtain an expression for ex4; in terms of eg.
2. Use the expression to show that e, — 0.

3. Knowing that the iteration converges, assess how fast it converges.

10. The error formula can be derived as follows. Since zx11 = ¢(xx) and
Tx = 410(‘77*)’
k1 = Thi1 — T = P(Tk) — @(24).

By Taylor’s theorem with remainder,
p(zr) = p(z:) = @' (&) (2 — 24),

where & lies between z; and z,. It follows that

ex+1 = @' (E)ex- (2.5)
This is the error formula we need to prove convergence.

11. At first glance, the formula (2.5) appears difficult to work with since it
depends on £, which varies from iterate to iterate. However —and this is the

2. Nonlinear Equations 13

essence of any local convergence theorem — we may take our starting point
close enough to x, so that

(&) <C <1, k=0,1,....

Specifically, we have @) /"(2)
/ _ f(z)f"(x
#0="pay

Since f(z,) = 0 and f'(z,) # 0, it follows that ¢'(z,) = 0. Hence by continuity,
there is an interval I = [z, — 0,z + 6] about z, such that if z € I; then

l¥'(2)| < C < L.

Now suppose that o € I5. Then since & is between z, and g, it follows
that &y € I5. Hence from (2.5),

ler] < |¢(&)lleo] < Cleo| < C8 <4,
and z; € I;. Now since z; is in I, so is x9 by the same reasoning. Moreover,
le2] < Clex| < 02|eo|.
By induction, if z;_1 € Ij, so is z, and
lex| < Cleg—1] < Ck|eo|.

Since C* — 0, it follows that e;, — 0; that is, the sequence z, 1, ... converges
to x4, which is what we wanted to show.

12. To assess the rate of convergence, we turn to a higher-order Taylor expan-
sion. Since ¢'(z.) = 0, we have

1

p(zr) — (74) = §<P"(77k)($k - z,)%,

where 7, lies between zj and z,.. Hence

1
Ck+1 = §<P”(77k)ei-

Since 7 approaches z, along with zy, it follows that

im Ck+1 _1 " — [(@)
: () = 2]“(35*).

k—o00 e% a 2

In other words,

€k+1 = éff’((‘f]ji)) ez'

14 Afternotes on Numerical Analysis

A sequence whose errors behave like this is said to be quadratically convergent.

13. To see informally what quadratic convergence means, suppose that the
multiplier of €2 in (2.6) is one and that eg = 107!. Then e; = 1072, e3 = 1074,
es 21078, e5 2 10716, and so on. Thus if z, is about one in magnitude, the
first iterate is accurate to about two places, the second to four, the third to
eight, the fourth to sixteen, and so on. In this case each iteration of Newton’s
method doubles the number of accurate figures.

For example, if the formula (2.4) is used to approximate the square root of
ten, starting from three, the result is the following sequence of iterates.

3.

3.16

3.1622
3.16227766016
3.16227766016838

Only the correct figures are displayed, and they roughly double at each iter-
ation. The last iteration is exceptional, because the computer I used carries
only about fifteen decimal digits.

14. For a more formal analysis, recall that the number of significant figures in
an approximation is roughly the negative logarithm of the relative error (see
§1.12). Assume that =, # 0, and let py denote the relative error in xi. Then
from (2.6) we have

|22 f" ()] - 2
& o = Kpyi.
PEk+1 2|f’($*)‘ Pk Pk
Hence
—log pg+1 = —2log p, — log K.
As the iteration converges, — log pr — 00, and it overwhelms the value of log K.
Hence

—log pr+1 = —2log py,

which says that x;; has twice as many significant figures as z.

Slow death

15. The convergence analysis we have just given shows that if Newton’s method
converges to a zero x, for which f/(z,) # 0 then in the long run it must converge
quadratically. But the run can be very long indeed.

For example, in §2.5 we noted that the iteration

Tpy1 = 2z — aa:%

2. Nonlinear Equations 15

will converge to a~! starting from any point less than a .

a < 1, we can take a itself as the starting value.
But suppose that ¢ = 1071°. Then

In particular, if

21 =2-10719 410730 ~2.10710,

Thus for practical purposes the first iterate is only twice the size of the starting
value. Similarly, the second iterate will be about twice the size of the first.
This process of doubling the sizes of the iterates continues until z = 100, at
which point quadratic convergence sets in. Thus we must have 2¥.10710 = 1010
or k = 66 before we begin to see quadratic convergence. That is a lot of work
to compute the reciprocal of a number.

16. All this does not mean that the iteration is bad, just that it needs a good
starting value. Sometimes such a value is easy to obtain. For example, suppose
that a = f-2°, where % < f <1 and we know e. These conditions are satisfied
if a is represented as a binary floating-point number on a computer. Then
a~!= f71.27¢ Since 1 < f~! < 2, the number 27¢ < a~! provides a good
starting value.

Lecture 3

Nonlinear Equations

A Quasi-Newton Method
Rates of Convergence
Tterating for a Fixed Point
Multiple Zeros

Ending with a Proposition

A quasi-Newton method

1. One of the drawbacks of Newton’s method is that it requires the computa-
tion of the derivative f'(zy) at each iteration. There are three ways in which
this can be a problem.

The derivative may be very expensive to compute.

2. The function f may be given by an elaborate formula, so that it is
easy to make mistakes in differentiating f and writing code for the
derivative.

3. The value of the function f may be the result of a long numerical
calculation. In this case the derivative will not be available as a
formula.

2. One way of getting around this difficulty is to iterate according to the
formula
f(xr)

T+l =Tk — —
9k

where g is an easily computed approximation to f’(zx). Such an iteration
is called a quasi-Newton method.? There are many quasi-Newton methods,
depending on how one approximates the derivative. For example, we will later
examine the secant method in which the derivative is approximated by the
difference quotient

flak) — f@e-1)

= . 3.1
9 LTk — Tk-1 (3-1)

Here we will analyze the simple case where g is constant, so that the iteration
takes the form
f(zk)

Tk =Tk — ——- 3.2
+1 p (3-2)

We will call this method the constant slope method. In particular, we might
take g = f'(zo), as in (2.2). Figure 3.1 illustrates the course of such an

2The term “quasi-Newton” usually refers to a class of methods for solving systems of
simultaneous nonlinear equations.

17

18 Afternotes on Numerical Analysis

Figure 3.1. The constant slope method.

iteration.

3. Once again we have a local convergence theorem. Let

f(z)
o@) =z -7
g
be the iteration function and assume that be the iteration function and assume
that ,
T
10! (2)] = ‘1 - % <1 (3.3)

Arguing as in §2.10, we can show that

ex+1 = @' (€x)er, (3.4)

where £ lies between zj and z.. Since |¢'(z4)| < 1, there is an interval I
about z, such that

lo'(z)] < C <1 whenever = €l.

3. Nonlinear Equations 19

Arguing as in §2.11, we find that if zo € I then
lex| < C¥lel,

which implies that the iteration converges.

4. To assess the quality of the convergence, note that (3.4) implies that

. €r+1 '
lim =¢(z
k—oo eg <,0(*)’
or asymptotically
ekl = ¢ (T4) ey

Thus if ¢'(z,) # 0, each iteration reduces the error by roughly a factor of
¢'(z4). Such convergence is called linear convergence.

5. It is worth noting that the convergence proof for the constant slope method
(3.2) is the same as the proof for Newton’s method itself— with one important
exception. The iteration function for Newton’s method satisfies ¢'(z,) = 0,
from which it follows that the constant C < 1 exists regardless of the function
f (provided that f'(z,) # 0). For the quasi-Newton method, we must postulate
that [¢'(z4)| < 1 in order to insure the existence of the constant C' < 1. This
difference is a consequence of the fact that the denominator g in the quasi-
Newton method is a free parameter, which, improperly chosen, can cause the
method to fail.

6. The methods also differ in their rates of convergence: Newton’s method
converges quadratically, while the constant slope method converges linearly
(except in the unlikely case where we have chosen g = f'(z.), so that ¢'(z.) =
0). Now in some sense all quadratic convergence is the same. Once it sets in,
it doubles the number of significant figures at each step. Linear convergence
is quite different. Its speed depends on the ratio

. Tk+1 — X
p = lim adia
k—oco T — Ty

If p is near one, the convergence will be slow. If it is near zero, the convergence
will be fast.

7. It is instructive to consider the case where
Tp+1 — Tx = p(Tk — Ts),

so that the error is reduced exactly by a factor of p at each iteration. In this
case
Tk — T = Pk(ivo - Ts).

20 Afternotes on Numerical Analysis
It follows that to reduce the error by a factor of €, we must have p¥ < € or

b — "loge" .
log p

The following table gives values of k for representative values of p and e.

p
| .99 .90 .50 .10 .01

1075 | 1146 110 17 6

e 1071012202 219 34 11
10715 | 3437 328 50 16

o O W

The numbers show that convergence can range from quite fast to very slow.
With p = 0.01 the convergence is not much worse than quadratic conver-
gence —at least in the range of reductions we are considering here. When
p = 0.99 the convergence is very slow. Note that such rates, and even slower
ones, arise in real life. The fact that some algorithms creep toward a solution
is one of the things that keeps supercomputer manufacturers in business.

Rates of convergence

8. We are going to derive a general theory of iteration functions. However,
first we must say something about rates of convergence. Here we will assume
that we have a sequence xg, 1, T3, ... converging to a limit z,.

9. If there is a constant p satisfying 0 < |p| < 1 such that

. T4l — T
lim —— = 3.5
Pl Tk — Ty P (3:5)
then the sequence {zj} is said to converge linearly with ratio (or rate) p. We
have already treated linear convergence above.?

10. If the ratio in (3.5) converges to zero, the convergence is said to be su-
perlinear. Certain types of superlinear convergence can be characterized as
follows. If there is a number p > 1 and a positive constant C' such that

lim 120172
k—00 |.’I)k — .’I,‘>,<|1’J

then the sequence is said to converge with order p. When p = 2 the convergence
is quadratic. When p = 3 the convergence is cubic. In general, the analysis
of quadratic convergence in §2.14 can be adapted to show that the number of
correct figures in a sequence exhibiting pth order convergence increases by a

31f p = 1, the convergence is sometimes called sublinear. The sequence {%} converges
sublinearly to zero.

3. Nonlinear Equations 21

factor of about p from iteration to iteration. Note that p does not have to be
an integer. Later we shall see the secant method (3.1) typically converges with
order p = 1.62....%

11. You will not ordinarily encounter rates of convergence greater than cubic,
and even cubic convergence occurs only in a few specialized algorithms. There
are two reasons. First, the extra work required to get higher-order convergence
may not be worth it —especially in finite precision, where the accuracy that
can be achieved is limited. Second, higher-order methods are often less easy
to apply. They generally require higher-order derivatives and more accurate
starting values.

Iterating for a fixed point

12. The essential identity of the local convergence proof for Newton’s method
and the quasi-Newton method suggests that they both might be subsumed un-
der a general theory. Here we will develop such a theory. Instead of beginning
with an equation of the form f(z) =0, we will start with a function ¢ having
a fized point x, — that is, a point z, for which ¢(z,) = z. —and ask when the
iteration

Tp+1 = o(Tk), k=0,1,... (3.6)

converges to x,. This iterative method for finding a fixed point is called the
method of successive substitutions.

13. The iteration (3.6) has a useful geometric interpretation, which is illus-
trated in Figures 3.2 and 3.3. The fixed point z, is the abscissa of the inter-
section of the graph of ¢(z) with the line y = z. The ordinate of the function
©(z) at xg is the value of z1. To turn this ordinate into an abscissa, reflect it in
the line y = z. We may repeat this process to get za, 3, and so on. It is seen
that the iterates in Figure 3.2 zigzag into the fixed point, while in Figure 3.3
they zigzag away: the one iteration converges if you start near enough to the
fixed point, whereas the other diverges no matter how close you start. The
fixed point in the first example is said to be atiractive, and the one in the
second example is said to be repulsive.

14. Tt is the value of the derivative of ¢ at the fixed point that makes the
difference in these two examples. In the first the absolute value of the derivative
is less than one, while in the second it is greater than one. (The derivatives
here are both positive. It is instructive to draw iteration graphs in which
the derivatives at the fixed point are negative.) These examples along with
our earlier convergence proofs suggest that what is necessary for a method of
successive substitutions to converge is that the absolute value of the derivative
be less than one at the fixed point. Specifically, we have the following result.

It is also possible for a sequence to converge superlinearly but not with order p > 1. The
sequence % is an example.

22 Afternotes on Numerical Analysis

x0 x1 x2 x3

Figure 3.2. An attractive fized point.

If
' (@] <1,

then there is an interval Iy = [z, — §, 2, + d] such that the iteration
(3.6) converges to z, whenever zo € Iy. If ¢/'(z,) # 0, then the
convergence is linear with ratio ¢'(z,). On the other hand, if

0= ‘Pl(x*) = (p”(:l?*) == (P(p_l) (z+) # (P(p) (), (3.7)

then the convergence is of order p.

15. We have essentially seen the proof twice over. Convergence is established
exactly as for Newton’s method or the constant slope method. Linear conver-
gence in the case where ¢'(z,) # 0 is verified as it was for the constant slope
method. For the case where (3.7) holds, we need to verify that the convergence
is of order p. In the usual notation, by Taylor’s theorem

1
Cht1 = Hso(p) (&k)ep-

Since & — x4, it follows that

3. Nonlinear Equations 23

x2 x1 x0

Figure 3.3. A repulsive fized point.

which establishes the pth-order convergence.

16. Armed with this result, we can return to Newton’s method and the constant
slope method. For Newton’s method we have

f(@a) f"(z)

o) =gy ="

(remember that f'(z,) is assumed to be nonzero). Thus Newton’s method is
seen to be at least quadratically convergent. Since

_ f'(a)
Fi(@)’

Newton’s method will converge faster than quadratically only when f(z,) = 0.
For the constant slope method we have

f'(z4)
—g .

@' (z4)

¢'(z) =1—

The requirement that the absolute value of this number be less than one is
precisely the condition (3.3).

24 Afternotes on Numerical Analysis

Multiple zeros

17. Up to now we have considered only a simple zero of the function f, that
is, a zero for which f'(z,) # 0. We will now consider the case where

0= f(z:) = f"(s) = - = f"V(2,) # ™) ().

By Taylor’s theorem

(m)
f@) = (@ — aynd)

m:

where £, lies between z, and z. If we set g(z) = f(™(&,)/m!, then

f(@) = (z - z)"g(2), (3-8)

where ¢ is continuous at z, and g(z,) # 0. Thus, when z is near z,, the
function f(x) behaves like a polynomial with a zero of multiplicity m at .
For this reason we say that z, is a zero of multiplicity m of f.

18. We are going to use the fixed-point theory developed above to assess the
behavior of Newton’s method at a multiple root. It will be most convenient to
use the form (3.8). We will assume that g is twice differentiable.

19. Since f'(z) = m(z — z.)™ 'g(z) + (z — z,)™g'(z), the Newton iteration

function for f is

(z —z:)"g() _ g, (w—z)g(z)
m(z — z.)™ tg(x) + (z — z.)"g' (z) mg(z) — (z — z.)g'(z)’

p(r) =z —
From this we see that ¢ is well defined at z, and

P(Ts) = T

According to fixed-point theory, we have only to evaluate the derivative of
@ at x, to determine if x, is an attractive fixed point. We will skip the slightly
tedious differentiation and get straight to the result:

1
!
Ty)=1——.
¢ () -
Therefore, Newton’s method converges to a multiple zero from any sufficiently
close approximation, and the convergence is linear with ratio 1 — % In partic-
ular for a double root, the ratio is %, which is comparable with the convergence
of interval bisection.

3. Nonlinear Equations 25

Ending with a proposition

20. Although roots that are exactly multiple are not common in practice,
the above theory says something about how Newton’s method behaves with
a nearly multiple root. An amusing example is the following proposition for
computing a zero of a polynomial of odd degree.
Let
flz) =2" 4+ apn_12" 1 +--- + ay, (3.9)

where n is odd. Since f(z) > 0 for large positive z and f(z) < 0 for large
negative x, by the intermediate value theorem f has a real zero. Moreover,
you can see graphically that if zg is greater than the largest zero of f, then
Newton’s method converges from zy. The proposition, then, is to choose a
very large value of zy (there are ways of choosing zj to be greater than the
largest root), and let Newton’s method do its thing.

The trouble with this proposition is that if z is very large, the term 2™ in
(3.9) dominates the others, and f(z) = z". In other words, from far out on the
z-axis, f appears to have a zero of multiplicity n at zero. If Newton’s method
is applied, the error in each iterate will be reduced by a factor of only 1 — %
(when n = 100, this is a painfully slow 0.99). In the long run, the iterates will
arrive near a zero, after which quadratic convergence will set in. But, as we
have had occasion to observe, in the long run we are all dead.

Lecture 4

Nonlinear Equations

The Secant Method
Convergence

Rate of Convergence
Multipoint Methods

Muller’s Method

The Linear-Fractional Method

The secant method
1. Recall that in a quasi-Newton method we iterate according to the formula
f ("If'k) (4'1)

T+l =Tk — —
9k

where the numbers gy, are chosen to approximate f'(zy). One way of calculating
such an approximation is to choose a step size hy and approximate f’(zy) by
the difference quotient

_ flzg + hy) — fxg)
gk = . :
k

There are two problems with this approach.

First, we have to determine the numbers h;. If they are too large, the
approximations to the derivative will be inaccurate and convergence will be
retarded. If they are too small, the derivatives will be inaccurate owing to
rounding error (we will return to this point in Lecture 24).

Second, the procedure requires one extra function evaluation per iteration.
This is a serious problem if function evaluations are expensive.

2. The key to the secant method is to observe that once the iteration is
started we have two nearby points, z; and zx_1, where the function has been
evaluated. This suggests that we approximate the derivative by

_ =) = fzr-1)

LTk — Tk-1
The iteration (4.1) then takes the form

g f@r)(@e —wp—1) _ zp—1f(zk) — 2 f (Tp—1)
Tp4+1 = Tk F(@r) — F(@r 1) Flan) — for 1) . (4.2)

This iteration is called the secant method.

27

28 Afternotes on Numerical Analysis

x2
x0 x1 \

Figure 4.1. The secant method.

3. The secant method derives its name from the following geometric interpreta-
tion of the iteration. Given zy and x;, draw the secant line through the graph
of f at the points (zo, f(z¢)) and (z1, f(z1)). The point zo is the abscissa
of the intersection of the secant line with the z-axis. Figure 4.1 illustrates
this procedure. As usual, a graph of this kind can tell us a lot about the
convergence of the method in particular cases.

4. If we set Fw)(w—v) flu) —uf(v)
P =R) T fw) - @))

then the iteration (4.2) can be written in the form

Tpt1 = O(Tp, Th—1)-

Thus ¢ plays the role of an iteration function. However, because it has two
arguments, the secant method is called a two-point method.

5. Although ¢ is indeterminate for 4 = v, we may remove the indeterminacy

4. Nonlinear Equations 29

by setting

W
P =8 iy

In other words, the secant method reduces to Newton’s method in the confluent
case where x;, = z;_1. In particular, it follows that

Ty Tx) = Ty

so that z, is a fixed point of the iteration.

Convergence

6. Because the secant method is a two-point method, the fixed-point theory
developed above does not apply. In fact, the convergence analysis is consider-
ably more complicated. But it still proceeds in the three steps outlined in §2.9:
(1) find a recursion for the error, (2) show that the iteration converges, and
(3) assess the rate of convergence. Here we will consider the first two steps.

7. It is a surprising fact that we do not need to know the specific form (4.3)
of the iteration function to derive an error recurrence. Instead we simply use
the fact that if we input the answer we get the answer back. More precisely, if
one of the arguments of ¢ is the zero z, of f, then ¢ returns z,; i.e.,

o(u,z4) =z and @(z4,v) = T..

Since ¢(u,z,) and (x4, v) are constant, their derivatives with respect to u
and v are zero:
Ou(u,z4) =0 and @y(zs,v) =0.

The same is true of the second derivatives:

Ouu(t,2,) =0 and @y (z4,v) = 0.

8. To get an error recursion, we begin by expanding ¢ about (z,,z.) in a
two-dimensional Taylor series. Specifically,

O(Tx + P, T + q) = P(Tx, Tu) + QulTx, T4)P + 0y (T4, T4)q
+ %[‘Puu(fﬂ* +0p, T, + OQ)pQ
+ 20up (T« + 0p, T+ + 09)Pq + oo (T« + Op, T, + 0q)¢%],

where 0 € [0,1]. Since @(z,Z+) = T, and @y (z«, T+) = u(T4, z4) =0,

(10(-73* + P, Tx + Q) =T+ %[‘Puu(af'* +0p, T + HQ)pQ
9 (4.4)
+ 2000 (@5 + Op, T+ + 09)Pq + Puo (T + Op, T, + 0q)q7].

30 Afternotes on Numerical Analysis

The term containing the cross product pq is just what we want, but the terms
in p? and ¢? require some massaging. Since @y, (z« + 0p,z,) = 0, it follows
from a Taylor expansion in the second argument that

(Puu(l'* +0p, z. + 9‘1) = Q(Puuv(x* +0p, s + TqOQ)Qa
where 7, € [0,1]. Similarly,
Ouu (Tx + 0p, T4 + 0q) = Opyyy (T + Tpep,w* + 6q)p,

where 7, € [0, 1]. Substituting these values in (4.4) gives

O(zs +p, 24 +q) = T4 + %[H(Puuv(-’ﬂ* +0p, z, + TqGQ)p

(4.5)
+ 20y (‘T* +0p, T, + 0‘1) + 9‘Puvv(~77* + Tpgp, Ty + 0‘])‘]]-

9. Turning now to the iteration proper, let the starting values be xy and x1,
and let their errors be ¢g = zo — z4 and e; = 1 — . Taking p = e; and ¢ = ¢
in (4.5), we get

€2 = (T + €1,%4 + €9) — T«

€1€p
= T[O(Puuv(x* + Oey, z. + Teybep)er
+ 2(Puv (I* + 9617 Ty + 960) + 9(pu1w(w* + 7'81061’ Ty -|— 060)60]
e1ep
= Tr(el,eo).

(4.6)
This is the error recurrence we need.

10. We are now ready to establish the convergence of the method. First note
that

7(0,0) = 20y T+, T4).
Hence there is a § > 0 such that if |ul,|v] < ¢ then

lor(u,v)| < C < 1.

Now let |eg|, |e1] < 4. From the error recurrence (4.6) it follows that |es| <
Clei| < |e1] < 4. Hence
lerr(eg,e1)] < C < 1,

and |eg| < Cleg| < C?|e1|. By induction
lex| < C* e,

and since the right-hand side of this inequality converges to zero, we have
er — 0; i.e., the secant method converges from any two starting values whose
errors are less than ¢ in absolute value.

4. Nonlinear Equations 31

Rate of convergence

11. We now turn to the convergence rate of the general two-point method.
The first thing to note is that since

€Ler_—
€kt1 = 5 lr(ek,ek,l) (4.7)

and 7(0,0) = 2@y (z4, T.), we have

. €k+1
lim —+t — o T)- 4.8
drn O (T, T (4.8)

If pup(zs,z4) # 0, we shall say that the sequence {xy} exhibits two-point
convergence.
12. We are going to show that two-point convergence is superlinear of order

1++5

=1.618....
2

p =
This number is the largest root of the equation
pPP—p—1=0. (4.9)

Now there are two ways to establish this fact. The first is to derive (4.9)
directly from (4.8), which is the usual approach. However, since we already
know the value of p, we can instead set

|ek+1|
= 4.10
%= oo (4.10)

and use (4.8) to verify that the s, have a nonzero limit.

13. You should be aware that some people object to this way of doing things
because (they say) it hides the way the result — in this case the particular value
of p—was derived. On the other hand, the mathematician Gauss is reported
to have said that after you build a cathedral you don’t leave the scaffolding
around; and he certainly would have approved of the following proof. Both
sides have good arguments to make; but as a practical matter, when you know
or have guessed the solution of a problem it is often easier to verify that it
works than to derive it from first principles.

14. From (4.10) we have
lex| = sk—1lex—1/|”

and ,
lekr1] = sklep] = sksh_ylex—1]P

32 Afternotes on Numerical Analysis

From (4.7),

3k3£—1|ek—1 |p2

-1 >
[Tk = |r(ex, ex—1)| = = spsh_1lex—1|P 7P 1

sk-1lex—1/Pler—1]
Since p2 —p — 1 = 0, we have |ej_1|P"P~1 =1 and
|T| = sksgj.

Let pp = log|rk| and o = logsk. Then our problem is to show that the
sequence defined by
ok = pr— (p—1)ok—1

has a limit.
Let p. = limg_, o pr- Then the limit o, if it exists, must satisfy

0w = ps — (p— 1)0..
Thus we must show that the sequence of errors defined by
(ok = 0x) = (P — ps) — (p — 1)(0k—1 — 0%)

converges to zero.

15. The convergence of the errors to zero can easily be established from first
principles. However, with an eye to generalizations I prefer to use the following
result from the theory of difference equations.

If the roots of the equation

1

" —a1z" = —a, =0

all lie in the unit circle and limg_,o, 7% = 0, then the sequence {ej}
generated by the recursion

€ =N+ 0161+ - An€g_p

converges to zero, whatever the starting values ¢g, ..., €,_1.

16. In our application n = 1 and €; = g} — g4, and 1 = pr — p«. The equation
whose roots are to lie in the unit circle is + (p — 1) = 0. Since p — 1 22 0.618,
the conditions of the above result are satisfied, and o — . It follows that
the numbers s have a nonzero limit. In other words, two-point convergence
is superlinear of order p = 1.618. ...

4. Nonlinear Equations 33

Multipoint methods

17. The theory we developed for the secant method generalizes to multipoint
iterations of the form

Tht1 = P(Th, Th—1, - -+, Th—nt1)-

Again the basic assumption is that if one of the arguments is the answer z,
then the value of ¢ is x,. Under this assumption we can show that if the
starting points are near enough z, then the errors satisfy

. €k+1
lim k+
k—oo €1+ €k—n+1

= (P12...n($*a Ty - - 73/'*),
where the subscript ¢ of ¢ denotes differentiation with respect to the ith argu-
ment.

18. If p19. n(Ts, Tx,...,x«) # 0, we say that the sequence exhibits n-point
convergence. As we did earlier, we can show that n-point convergence is the
same as pth-order convergence, where p is the largest root of the equation

n n—1

p'—p" —--—p—-1L

The following is a table of the convergence rates as a function of n.

nop
2 1.61
3 1.84
4 1.93
5 1.96

The upper bound on the order of convergence is two, which is effectively at-
tained for n = 3. For this reason multipoint methods of order four or greater
are seldom encountered.

Muller’s method

19. The secant method is sometimes called an interpolatory method, because
it approximates a zero of a function by a line interpolating the function at two
points. A useful iteration, called Muller’s method, can be obtained by fitting
a quadratic polynomial at three points. In outline, the iteration proceeds
as follows. The input is three points xk, Tx_1, Tx—o, and the corresponding
function values.

1. Find a quadratic polynomial g(z) such that g(z;) = f(z;), (i = k, k—
1,k — 2).
2. Let 41 be the zero of g that lies nearest x.

34 Afternotes on Numerical Analysis

x1 X3 x2

This way to x4.

Figure 4.2. A horrible example.

It is a worthwhile exercise to work out the details.

20. Muller’s method has the advantage that it can produce complex iterates
from real starting values. This feature is not shared by either Newton’s method
or the secant method.

The linear-fractional method

21. Functions like the one pictured in Figure 4.2 come up occasionally, and
they are difficult to solve. The figure shows the course of the secant method
starting from a bracket [z1,z2]. The third iterate z3 joins zo to the right of
the zero, and because the function is flat there, x4 is large and negative.

22. The trouble with the secant method in this case is that a straight line is
not a good approximation to a function that has a vertical asymptote, followed
by a zero and then a horizontal asymptote. On the other hand, the function

r—a

9(z) = bx —c

has a vertical asymptote at = {, a zero at x = a, and a horizontal asymptote

at y = b~! and therefore should provide a better approximation.

Since there are three free parameters in the function g, it is determined
by three points. Thus a three-point interpolatory method similar to Muller’s
method can be based on linear-fractional functions.

23. In implementing the linear-fractional method it is easy to get lost in the
details and end up with an indecipherable mess. My first encounter with the
method was as a single FORTRAN statement that extended over several cards
(Yes, cards!), and I was awed by the ingenuity of the programmer. It was
only some years later that I learned better. By deriving the results we need in
simple steps, we can effectively write a little program as we go along. Here is
how it is done.

4. Nonlinear Equations 35

24. Most low-order interpolation problems are simplified by shifting the origin.
In particular we take y; = ; — zx (1 = k,k — 1,k — 2) and determine a, b, and
¢ so that

_Yy—a

Ty —c

9(y)

satisfies
f(xl):g(y’t)7 i:kak_lak_z

or equivalently
yi —a = f(z;)(by; —), 1=k k—1,k—2. (4.11)
The function g is zero when y;,1 = a, and the next point is given by

Tg+1 = Tk + a.

25. Since at any one time there are only three points, there is no need to keep
the index k around. Thus we start with three points x0, x1, x2, and their
corresponding function values £0, £1, £2. We begin by setting

y0 =x0 — x2,
yl=1x1—x2.

From (4.11) we have
yO0 —a=£0(b * y0 — c),
yl—a=f1(b*yl —c),

and
a=1f2xc. (4.12)

If we add this last equation to the proceeding two we get

yO0=£y0* b+ df0 * c,

yl=fylxb+dflxc, (4.13)

where
fy0=£0 * yO,
fyl=1=1x*yl,
and
df0 = £2 — £0,
df1 =f2 — f1.

The equations (4.13) can be solved for ¢ by Cramer’s rule:

fy0+y1l — fyl *xyO0
c= .
fy0 x df1 — £yl x df0

36 Afternotes on Numerical Analysis

Thus from (4.12) the next iterate is

x3=x2+f2xc.

26. Because we have chosen our origin carefully and have taken care to define
appropriate intermediate variables, the above development leads directly to
the following simple program. The input is the three points x0, x1, x2, and
their corresponding function values £0, £1, £2. The output is the next iterate
x3.

yO = x0 - x2;
yl = x1 - x2;
fy0 = f0x*y0;
fyl = fixy1;
dfo = £f2 - £0;

dfl = £2 - f1;
c = (fyOxyl-fylxy0)/(fyOxdf1-fy1*dfo);
x3 = x2 + f2xc;

Lecture 5

Nonlinear Equations

A Hybrid Method
Errors, Accuracy, and Condition Numbers

A hybrid method

1. The secant method has the advantage that it converges swiftly and requires
only one function evaluation per iteration. It has the disadvantage that it
can blow up in your face. This can happen when the function is very flat so
that f'(x) is small compared with f(z) (see Figure 4.2). Newton’s method is
also susceptible to this kind of failure; however, the secant method can fail in
another way that is uniquely its own.

2. The problem is that in practice the function f will be evaluated with error.
Specifically, the program that evaluates f at the point z will return not f(x)
but f(z) = f(z) + e(z), where e(z) is an unknown error. As long as f(z) is
large compared to e(z), this error will have little effect on the course of the
iteration. However, as the iteration approaches z,, e(z) may become larger
than f(z). Then the approximation to f’ that is used in the secant method
will have the value

[f (zx) = fzr1)] + [e(2x) — e(zh1)]

T — Tg—1

Since the terms in e dominate those in f, the value of this approximate deriva-
tive will be unpredictable. It may have the wrong sign, in which case the
secant method may move away from z,. It may be very small compared to
f(zx), in which case the iteration will take a wild jump. Thus, if the func-
tion is computed with error, the secant method may behave erratically in the

neighborhood of the zero it is supposed to find.

3. We are now going to describe a wonderful combination of the secant
method and interval bisection.® The idea is very simple. At any stage of
the iteration we work with three points a, b, and c. The points a and b are
the points from which the next secant approximation will be computed; that
is, they correspond to the points xj; and zp_1. The points b and ¢ form a
proper bracket for the zero. If the secant method produces an undesirable
approximation, we take the midpoint of the bracket as our next iterate. In

5The following presentation owes much to Jim Wilkinson’s elegant technical report “Two
Algorithms Based on Successive Linear Interpolation,” Computer Science, Stanford Univer-
sity, TR CS-60, 1967.

37

38 Afternotes on Numerical Analysis

this way the speed of the secant method is combined with the security of the
interval bisection method. We will now fill in the details.

4. Let fa, fb, and fc denote the values of the function at a, b, and c. These
function values are required to satisfy

1. fa,fb,fc #0,
2. sign(fb) # sign(fc), (5.1)
3. |fb| < |fcl.

At the beginning of the algorithm the user will be required to furnish points
b and ¢ = a satisfying the first two of these conditions. The user must also
provide a convergence criterion eps. When the algorithm is finished, the brack-
eting points b and ¢ will satisfy |c — b| < eps.

5. The iterations take place in an endless while loop, which the program leaves
upon convergence. Although the user must see that the first two conditions
in (5.1) are satisfied, the program can take care of the third condition, since
it has to anyway for subsequent iterations. In particular, if |[fc| < |fb|, we
interchange b and c. In this case, a and b may no longer be a pair of successive
secant iterates, and therefore we set a equal to c.

while(1){
if (abs(fc) < abs(fb))
{
t =c; c=Db; b=t; (5.2)
t = fc; fc = fb; fb = t;

)
[}

c; fa = fc;

}

6. We now test for convergence, leaving the loop if the convergence criterion
is met.
if (abs(b-c) <= eps)
break;

7. The first step of the iteration is to compute the secant step s at the points
a and b and also the midpoint m of b and ¢. One of these is to become our
next iterate. Since |fb| < |fc|, it is natural to expect that z, will be nearer to
b than ¢, and of course it should lie in the bracket. Thus if s lies between b
and m, then the next iterate will be s; otherwise it will be m.

8. Computing the next iterate is a matter of some delicacy, since we cannot
say a priori whether b is to the left or right of c. It is easiest to cast the tests
in terms of the differences ds = s — b and m = m — b. The following code does
the trick. When it is finished, dd has been computed so that the next iterate
is b 4 dd. Note the test to prevent division by zero in the secant step.

5. Nonlinear Equations 39

dm = (c-b)/2;
df = (fa-fb);
if (df == 0)
ds = dm;
else
ds = -fb*(a-b)/df;
if (sign(ds)!=sign(dm) || abs(ds) > abs(dm))
dd = dm;
else
dd = ds;

9. At this point we make a further adjustment to dd. The explanation is best
left for later (§5.16).

if (abs(dd) < eps)
dd = 0.5*sign(dm) *eps;

10. The next step is to form the new iterate —call it d—and evaluate the
function there.

d
fd

b + dd;
£(d);

11. We must now rename our variables in such a way that the conditions
of (5.1) are satisfied. We take care of the condition that £fd be nonzero by
returning if it is zero.

if (£d == 0){
b=c=4d; fb = fc = fd;
break;

}

12. Before taking care of the second condition in (5.1), we make a provisional
assignment of new values to a, b, and c.

a=Db; b =4d;
fa = fb; fb = fd;

13. The second condition in (5.1) says that b and ¢ form a bracket for z..
If the new values fail to do so, the cure is to replace ¢ by the old value of b.
The reasoning is as follows. The old value of b has a different sign than the
old value of c. The new value of b has the same sign as the old value of c.
Consequently, the replacement results in a new value of ¢ that has a different
sign than the new value of b.

In making the substitution, it is important to remember that the old value
of b is now contained in a.

40 Afternotes on Numerical Analysis

Figure 5.1. A problem with c.

if (sign(fb) == sign(fc)){
c = a; fc = fa;

}

14. The third condition in (5.1) is handled at the top of the loop; see (5.2).
15. Finally, we return after leaving the while loop.

}

return;

16. To explain the adjustment of dd in §5.9, consider the graph in Figure 5.1.
Here d is always on the side of z, that is opposite ¢, and the value of ¢
is not changed by the iteration. This means that although b is converging
superlinearly to z,, the length of the bracket converges to a number that is
greater than zero— presumably much greater than eps. Thus the algorithm
cannot converge until its erratic asymptotic behavior forces some bisection
steps.

The cure for this problem lies in the extra code introduced in §5.9. If the
step size dd is less than eps in absolute value, it is forced to have magnitude
0.5*eps. This will usually be sufficient to push s across the zero to the same
side as ¢, which insures that the next bracket will be of length less than eps —
just what is needed to meet the convergence criterion.

Errors, accuracy, and condition numbers

17. We have already observed in §5.2 that when we attempt to evaluate the
function f at a point z the value will not be exact. Instead we will get a
perturbed value

f(z) = f(2) + e(x).
The error e(z) can come from many sources. It may be due to rounding error in

the evaluation of the function, in which case it will behave irregularly. On the
other hand, it may be dominated by approximations made in the evaluation of

5. Nonlinear Equations 41

the function. For example, an integral in the definition of the function may have
been evaluated numerically. Such errors are often quite smooth. But whether
or not the error is irregular or smooth, it is unknown and has an effect on the
zeros of f that cannot be predicted. However, if we know something about the
size of the error, we can say something about how accurately we can determine
a particular zero.

18. Let z, be a zero of f, and suppose we have a bound € on the size of the
error; i.e.,
le(z)] < e.

If z1 is a point for which f(z1) > €, then

f(z1) = f(z1) +e(z1) > f(z1) —€>0;

i.e., f(z1) has the same sign as f(z1). Similarly, if f(z2) < —¢, then f(z2)
is negative along with f(z2), and by the intermediate value theorem f has a
zero between z; and zy. Thus, whenever |f(z)| > €, the values of f(z) say
something about the location of the zero in spite of the error.
To put the point another way, let [a, b] be the largest interval about z, for
which
z € [a,b] = f(z)<e

As long as we are outside that interval, the value of f (z) provides useful in-
formation about the location of the zero. However, inside the interval [a, b]
the value of f (z) tells us nothing, since it could be positive, negative, or zero,
regardless of the sign of f(z).

19. The interval [a,b] is an interval of uncertainty for the zero z.: we know
that z, is in it, but there is no point in trying to pin it down further. Thus,
a good algorithm will return a point in [a, b], but we should not expect it to
provide any further accuracy. Algorithms that have this property are called
stable algorithms.

20. The size of the interval of uncertainty varies from problem to problem. If
the interval is small, we say that the problem is well conditioned. Thus, a stable
algorithm will solve a well-conditioned problem accurately. If the interval is
large, the problem is ill conditioned. No algorithm, stable or otherwise, can be
expected to return an accurate solution to an ill-conditioned problem. Only if
we are willing to go to extra effort, like reducing the error e(z), can we obtain
a more accurate solution.

21. A number that quantifies the degree of ill-conditioning of a problem is
called a condition number. To derive a condition number for our problem,
let us compute the half-width of the interval of uncertainty [a,b] under the
assumption that

f'(zy) #0.

42 Afternotes on Numerical Analysis

eps

eps

Figure 5.2. Ill- and well-conditioned roots.

From the approximation

f@) = f() + fl(@) (@ — @) = (@) (2 — 2.)

it follows that |f(z)| < € when |f'(z.)(z — z.)| S e. Hence,

€
T — 24| S ;
S ER]
or equivalently
[a,b] =2 |z, — %,x* + % .
()] /()]

Thus the number 1/|f'(z,)| tells us how much the error is magnified in
the solution and serves as a condition number. A zero with a large derivative
is well conditioned: one with a small derivative is ill conditioned. Figure 5.2
illustrates these facts.

e Floating-Point Arithmetic

43

Lecture 6

Floating-Point Arithmetic

Floating-Point Numbers
Overflow and Underflow
Rounding Error
Floating-Point Arithmetic

Floating-point numbers

1. Anyone who has worked with a scientific hand calculator is familiar with
floating-point numbers. Right now the display of my calculator contains the
characters

2.597 —03 (6.1)

which represent the number
2.597 - 1072,

The chief advantage of floating-point representation is that it can encompass
numbers of vastly differing magnitudes. For example, if we confine ourselves
to six digits with five after the decimal point, then the largest number we can
represent is 9.99999 = 10, and the smallest is 0.00001 =2 10 . On the other
hand, if we allocate two of those six digits to represent a power of ten, then
we can represent numbers ranging between 10~ % and 10%°. The price to be
paid is that these floating-point numbers have only four figures of accuracy, as
opposed to as much as six for the fixed-point numbers.

2. A base-f floating-point number consists of a fraction f containing the
significant figures of the number and ezponent e containing its scale.® The
value of the number is

fe B
3. A floating-point number a = f - 8¢ is said to be normalized if
BTl f<

In other words, a is normalized if the base-3 representation of its fraction has
the form
f :0.£E1.’E2...,

where 1 # 0. Most computers work chiefly with normalized numbers, though
you may encounter unnormalized numbers in special circumstances.

The term “normalized” must be taken in context. For example, by our
definition the number (6.1) from my calculator is not normalized, while the

5The fraction is also called the mantissa and the exponent the characteristic.

45

46 Afternotes on Numerical Analysis

75}

exponent fraction

Figure 6.1. A floating-point word.

number 0.2597 - 102 is. This does not mean that there is something wrong
with my calculator — just that my calculator, like most, uses a different nor-
malization in which 1 < f < 10.

4. Three bases for floating-point numbers are in common use.

name ‘ base ‘ where found

binary 2 | most computers

decimal 10 | most hand calculators

hex 16 | IBM mainframes and clones

In most computers, binary is the preferred base because, among other things,
it fully uses the bits of the fraction. For example, the binary representation
of the fraction of the hexadecimal number one is .00010000.... Thus, this
representation wastes the three leading bits to store quantities that are known
to be zero.

5. Even binary floating-point systems differ, something that in the past has
made it difficult to produce portable mathematical software. Fortunately, the
IEEE has proposed a widely accepted standard, which most PCs and work-
stations use. Unfortunately, some manufacturers with an investment in their
own floating-point systems have not switched. No doubt they will eventually
come around, especially since the people who produce mathematical software
are increasingly reluctant to jury-rig their programs to conform to inferior
systems.

6. Figure 6.1 shows the binary representation of a 32-bit IEEE standard
floating-point word. One bit is devoted to the sign of the fraction, eight bits to
the exponent, and twenty-three bits to the fraction. This format can represent
numbers ranging in size from roughly 10738 to 1038, Its precision is about
seven significant decimal digits. A curiosity of the system is that the leading
bit of a normalized number is not represented, since it is known to be one.

The shortest floating-point word in a system is usually called a single preci-
sion number. Double precision numbers are twice as long. The double precision
IEEE standard devotes one bit to the sign of the fraction, eleven bits to the
exponent, and fifty-two bits to the fraction. This format can represent num-
bers ranging from roughly 107397 to 103°7 to about fifteen significant figures.
Some implementations provide a 128-bit floating-point word, called a quadruple
precision number, or quad for short.

6. Floating-Point Arithmetic 47

Overflow and underflow

7. Since the set of real numbers is infinite, they cannot all be represented by
a word of finite length. For floating-point numbers, this limitation comes in
two flavors. First, the range of the exponent is limited; second, the fraction
can only represent a finite number of the numbers between S~! and one. The
first of these limitations leads to the phenomena of overflow and underflow,
collectively known as ezponent exceptions; the second leads to rounding error.
We will begin with exponent exceptions.

8. Whenever an arithmetic operation produces a number with an exponent
that is too large, the result is said to have overflowed. For example, in a decimal
floating-point system with a two-digit exponent, the attempt to square 1050
will result in overflow.

Similarly an arithmetic operation that produces an exponent that is too
small is said to have underflowed. The attempt to square 10 % will result in
underflow in a decimal floating-point system with a two-digit exponent.

9. Overflow is usually a fatal error which will cause many systems to stop with
an error message. In IEEE arithmetic, the overflow will produce a special word
standing for infinity, and if the execution is continued it will propagate. An
underflow is usually set to zero and the program continues to run. The reason
is that with proper scaling, overflows can often be eliminated at the cost of
generating harmless underflows.

10. To illustrate this point, consider the problem of computing
c=+vVaZ+ b,

where a = 10% and b = 1. On a four-digit decimal computer the correctly
rounded answer is 10%°. However, if the exponent has only two digits, then the
computation will overflow while computing a?.

The cure is to compute ¢ in the form

where s is a suitable scaling factor, say
s = max{|a|, ||} = 10%°.

With this value of s, we must compute

e=100/12 + (L :
- 1060) -

Now when (1/10%)2 is squared, it underflows and is set to zero. This does no
harm, because 10~ !0 is insignificant compared with the number one, to which

48 Afternotes on Numerical Analysis

it is added. Continuing the computation, we obtain ¢ = 10°, which is what
we wanted.

Although the above example is a simple calculation, it illustrates a tech-
nique of wide applicability —one that should be used more often.

Rounding error

11. The second limitation that a fixed word length imposes on floating-point
arithmetic is that most numbers cannot be represented exactly. For example,
the square root of seven is

2.6457513....

On a five-digit decimal computer, the digits beyond the fourth must be dis-
carded. There are two traditional ways of doing this: conventional rounding,
which yields

2.6458,

and chopping (also called truncation), which yields

2.6457.

12. Tt is instructive to compute a bound on the relative error that rounding
introduces. The process is sufficiently well illustrated by rounding to five digits.
Thus consider the number

a = X.XXXXY,

which is rounded to
b = X.XXXZ.

Let us say we round up if Y > 5 and round down if Y < 5. Then it is easy to
see that
|b—al <5-107°.

On the other hand, the leading digit of a is assumed nonzero, and hence |a| > 1.

It follows that
b —q

|a]

1
<5-107°=-107%
2
More generally, rounding a to t decimal digits gives a number b satisfying

b — q _ 11044-1.
o] 2

13. The same argument can be used to show that when a is chopped it gives
a number b satisfying

6. Floating-Point Arithmetic 49

This bound is twice as large as the bound for rounding, as might be expected.
However, as we shall see later, there are other, more compelling reasons for
preferring rounding to chopping.

14. The bounds for ¢-digit binary numbers are similar:

|b — al _ { 2t rounding,
|al 2=+l chopping.

15. These bounds can be put in a form that is more useful for rounding-
error analysis. Let b = fl(a) denote the result of rounding or chopping a on a
particular machine, and let e\ denote the upper bound on the relative error.
If we set

then b = a(1 + ¢) and |e| < ep. In other words,

fi(a) = a(1 +¢), le] < em- (6.2)

16. The number €y in (6.2) is characteristic of the floating-point arithmetic
of the machine in question and is called the rounding unit for the machine
(also called machine epsilon). In some computations we may need to know
the rounding unit. Many programming languages have library routines that
return machine characteristics, such as the rounding unit or the exponent
range. However, it is also possible to compute a reasonable approximation.

The key observation is that the rounding unit is at most slightly greater
than the largest number x for which the computed value of 1 4+ x is equal
to one. For example, if in six-digit binary arithmetic with rounding we take
x = 277, then the rounded value of 1 + x is exactly one. Thus, we can obtain
an approximation to ey by starting with a large value of x and diminishing it
until 1 + x evaluates to one. The following fragment does just that.

x =1;
while (1+4x != 1)
x = x/2;
Unfortunately, this code can be undone by well-meaning but unsophisti-

cated compilers that optimize the test 1+x != 1 to x !'= 0 or perform the test
in extended precision registers.

Floating-point arithmetic

17. Most computers provide instructions to add, subtract, multiply, and divide
floating-point numbers, and those that do not usually have software to do the
same thing. In general a combination of floating-point numbers will not be

50 Afternotes on Numerical Analysis

representable as a floating-point number of the same size. For example, the
product of two five-digit numbers will generally require ten digits for its rep-
resentation. Thus, the result of a floating-point operation can be represented
only approximately.

18. Ideally, the result of a floating-point operation should be the exact result
correctly rounded. More precisely, if fl(a o b) denotes the result of computing
a o b in floating-point and ey is the rounding unit, then we would like to have
(cf. §6.15)

fllaod) = (aob)(1l+e), le] < em-

Provided no exponent exceptions occur, the IEEE standard arithmetic satisfies
this bound. So do most other floating-point systems, at least when o = x, +.
However, some systems can return a difference with a large relative error, and
it is instructive to see how this can come about.

19. Consider the computation of the difference 1—0.999999 in six-digit decimal
arithmetic. The first step is to align the operands thus:

1.000000
—0.999999

If the computation is done in seven-digit registers, the computer can go on to

calculate
1.000000

—0.999999
0.000001

and normalize the result to the correct answer: .100000 - 10~%. However, if
the computer has only siz-digit registers, the trailing 9 will be lost during the
alignment. The resulting computation will proceed as follows

1.00000
~0.99999 (6.3)
0.00001

giving a normalized answer of .100000-10~°. In this case, the computed answer
has a relative error of ten!

20. The high relative error in the difference is due to the absence of an extra
guard digit in the computation. Unfortunately some computer manufacturers
fail to include a guard digit, and their floating-point systems are an annoyance
to people who have to hold to high standards, e.g., designers of library routines
for special functions. However, the vast majority of people never notice the
absence of a guard digit, and it is instructive to ask why.

21. The erroneous answer .100000 - 10~ computed in (6.3) is the difference
between 1 and 0.99999 instead of 1 and 0.999999. Now the relative error in

6. Floating-Point Arithmetic 51

0.99999 as an approximation to 0.999999 is about 9-107%, which is of the same
order of magnitude as the rounding unit €y;. This means that the computed
result could have been obtained by first making a very slight perturbation in
the arguments and then performing the subtraction exactly. We can express
this mathematically by saying that

fllatd) =a(l+e)£b(1+¢e), l€al, |€n] < em- (6.4)

(Note that we may have to adjust the rounding unit upward a little for this
bound to hold.)

22. Equation (6.4) is an example of a backward error analysis. Instead of
trying to predict the error in the computation, we have shown that whatever
the error it could have come from very slight perturbations in the original data.
The power of the method lies in the fact that data usually comes equipped with
errors of its own, errors that are far larger than the rounding unit. When put
beside these errors, the little perturbations in (6.4) are insignificant. If the
computation gives an unsatisfactory result, it is due to ill-conditioning in the
problem itself, not to the computation.

We will return to this point later. But first an example of a nontrivial
computation.

Lecture 7

Floating-Point Arithmetic

Computing Sums

Backward Error Analysis
Perturbation Analysis

Cheap and Chippy Chopping

Computing sums

1. The equation fl(a +b) = (a +b)(1 + €) (|e| < em) is the simplest example
of a rounding-error analysis, and its simplest generalization is to analyze the
computation of the sum

sn = f(z1 + 22+ -+ + zp).

There is a slight ambiguity in this problem, since we have not specified the
order of summation. For definiteness assume that the z’s are summed left to
right.

2. The tedious part of the analysis is the repeated application of the error
bounds. Let
S; :ﬂ(.'L'l —|—.T2+---—|—$i).

Then
so =fl(z1 + 22) = (z1 + z2)(1+€1) =z1(1 + €1) + 22(1 + €1),
where |€1] < ey Similarly,

83 = (82 + £E3) (82 + :L‘3)(1 + 62)
= .’I,‘l(]. + 61)(1 + 62)
ma(1+e)(l+e)+
.’133(1 + 62)

Continuing in this way, we find that

Sp = ﬂ(snfl + wn) = (Snfl + xn)(l + 6nfl)
= .’I)l(l + 61)(1 + 62) s (1 + en—l) +
zo(l+e)(14+e€) - (1+€-1)+

z3(1+€2) - (1+en1) + (7.1)
Tn—1(1+ €n—2)(1+ €p—1) +
Tn(l+ €p_1),

where |¢;| <em (1=1,2,...,n—1).

53

54 Afternotes on Numerical Analysis

3. The expression (7.1) is not very informative, and it will help to introduce
some notation. Let the quantities n; be defined by

I+m =0+e)l+e) - (1+en-1),
1+nm =04+e)l+e) --(14+€,-1),
1+n3 =0+4+e) - (1+ep-1),
1+n,1= (1 + 6n—2)(1 + 6n—1);

14, =0+¢€p-1).

Then

sp = z1(14+m)+zo(1+n2)+23(1+m3)+ -+ Tp_1(1+nm—1)+zn(1+n,). (7.2)

4. The number 1+ 7; is the product of numbers 1 +¢; that are very near one.
Thus we should expect that 1 + 7; is itself near one. To get an idea of how
near, consider the product

1+mp-1 = (1 + 6n—2)(1 + 6n—l) =1+ (en—Q + 6n—l) + €n—2€p—1. (73)

Now |en 2 + €4 1| < 2eym and e, 26, 1| < €3 If, say, ey = 10712 then

2ep = 2+ 1071 while €2, = 10739, Thus the third term on the right-hand side
of (7.3) is insignificant compared to the second term and can be ignored. If we
ignore it, we get

Mn—1 = €n—2 + €n—1

or
mn-1] S len—a| + len—1] < 2em.

In general,
Im| S (n—Dem,
P . . A4
|771'|§(n_2+1)6M> 222,3,...,71,. (7)
5. The approximate bounds (7.4) are good enough for government work, but
there are fastidious individuals who will insist on rigorous inequalities. For
them we quote the following result.

If ney <0.1and ¢; <ey (1 =1,2,...,n), then
1+e)(l+e) - (1+e)=1+n,

where
n < 1.06ney.

7. Floating-Point Arithmetic 55

Thus if we set
ey = 1.06eyr,

then the approximate bounds (7.4) become quite rigorously

Im| < (n— ey,
ml <(n—i+ ey, i=23,....n. (7.5)

The quantity €}, is sometimes called the adjusted rounding unit.

6. The requirement that ney < 0.1 is a restriction on the size of n, and it is
reasonable to ask if it is one we need to worry about. To get some idea of what
it means, suppose that eyy = 107 '5. Then for this inequality to fail we must
have n > 10™. If we start summing numbers on a computer that can add at
the rate of 1usec = 10 6sec, then the time required to sum 10'* numbers is

10® sec = 3.2 years.

In other words, don’t hold your breath waiting for ney to become greater than
0.1.

Backward error analysis

7. The expression
sp = o1(14+m)+ze(14+n2) +23(14n03)++ - -+ Zn_1(14+0n—1) +2p(1+n5), (7.6)

along with the bounds on the 7;, is called a backward error analysis because the
rounding errors made in the course of the computation are projected backward
onto the original data. An algorithm that has such an analysis is called stable
(or sometimes backward stable).

We have already mentioned in connection with the sum of two numbers
(§6.22) that stability in the backward sense is a powerful property. Usually the
backward errors will be very small compared to errors that are already in the
input. In that case it is the latter errors that are responsible for the inaccuracies
in the answer, not the rounding errors introduced by the algorithm.

8. To emphasize this point, suppose you are a numerical analyst and are
approached by a certain Dr. XYz who has been adding up some numbers.

Xyz: I've been trying to compute the sum of ten numbers, and the answers I
get are nonsense, at least from a scientific viewpoint. I wonder if the computer
is fouling me up.

You: Well it certainly has happened before. What precision were you using?
Xvyz: Double. I understand that it is about fifteen decimal digits.

You: Quite right. Tell me, how accurately do you know the numbers you were
summing?

56 Afternotes on Numerical Analysis

Xvyz: Pretty well, considering that they are experimental data. About four
digits.
You: Then it’s not the computer that is causing your poor results.

Xyz: How can you say that without even looking at the numbers? Some sort
of magic?

You: Not at all. But first let me ask another question.
Xyz: Shoot.

You: Suppose I took your numbers and twiddled them in the sixth place.
Could you tell the difference?

Xyz: Of course not. I already told you that we only know them to four places.

You: Then what would you say if I told you that the errors made by the
computer could be accounted for by twiddling your data in the fourteenth place
and then performing the computations exactly?

Xvyz: Well, I find it hard to believe. But supposing it’s true, you’re right. It’s
my data that’s the problem, not the computer.

9. At this point you might be tempted to bow out. Don’t. Dr. XvyZ wants to
know more.

Xvz: But what went wrong? Why are my results meaningless?

You: Tell me, how big are your numbers?

Xyz: Oh, about a million.

You: And what is the size of your answer?

Xyz: About one.

You: And the answers you compute are at least an order of magnitude too
large.

Xvz: How did you know that. Are you a mind reader?

You: Common sense, really. You have to cancel five digits to get your answer.
Now if you knew your numbers to six or more places, you would get one or more
accurate digits in your answer. Since you know only four digits, the lower two
digits are garbage and won’t cancel. You’ll get a number in the tens or greater
instead of a number near one.

Xyz: What you say makes sense. But does that mean I have to remeasure my
numbers to six or more figures to get what I want?

You: That’s about it.

Xyz: Well I suppose I should thank you. But under the circumstances, it’s not
easy.

You: That’s OK. It comes with the territory.

10. The above dialogue is artificial in three respects. The problem is too
simple to be characteristic of real life, and no scientist would be as naive as

7. Floating-Point Arithmetic 57

Dr. Xvz. Moreover, people don’t roll over and play dead like Dr. XyZz: they
require a lot of convincing. But the dialogue illustrates two important points.
The first point is that a backward error analysis is a useful tool for removing
the computer as a suspect when something goes wrong. The second is that
backward stability is seldom enough. We want to know what went wrong. What
is there in the problem that is causing difficulties? To use the terminology we
introduced for zeros of functions: When is the problem ill-conditioned?

Perturbation analysis

11. To answer the question just posed, it is a good idea to drop any consid-
erations of rounding error and ask in general what effects known errors in the
x; will have on the sum

o=zx1+29+ -+ 2.
Specifically, we will suppose that
i =zi(1+p), |wl <e (7.7)
and look for a bound on the error in the sum
c=TI1+To+ -+ Tp.

Such a procedure is called a perturbation analysis because it assesses the effects
of perturbations in the arguments of a function on the value of the function.
The analysis is easy enough to do. We have

|0 — ol < |zallpa] + [woflpz] + - - + |2a|lpal-
From (7.7), we obtain the following bound on the absolute error:
|6 — 0| < (|Jz1] + |z2| + -+ - + |zn))e
We can now obtain a bound on the relative error by dividing by |o|. Specifically,

if we set
P |z1| + |z2] + - - + |z0]

o mtme et

then
|6 — o

o] < Ke. (7.8)
The number k, which is never less than one, tells how the rounding errors made
in the course of the computation are magnified in the result. Thus it serves
as a condition number for the problem. (Take a moment to look back at the
discussion of condition numbers in §5.21.)

58 Afternotes on Numerical Analysis

12. In Dr. XvZ’s problem, the experimental errors in the fourth place can be
represented by € = 1074, in which case the bound becomes

relative error = k- 104,

Since there were ten x’s of size about 1,000,000, while the sum of the z’s was

about one, we have x = 107, and the bound says that we can expect no
accuracy in the result, regardless of any additional rounding errors.

13. We can also apply the perturbation analysis to bound the effects of round-
ing errors on the sum. In this case the errors u; correspond to the errors 7; in
(7.2). Thus from (7.5) we have

il < (n—1)ey =e.
It then follows from (7.8) that

Sp— O
% < (n —1)key,

where as usual

o |z1| 4+ |z2| + - - + |zn|
|£C1+$2+"'+.’Bn|

is the condition number for the sum.

Cheap and chippy chopping

14. When the terms z; in the sum are all positive (or all negative), the con-
dition number £ is one; i.e., the problem is perfectly conditioned. In this case,
the bound on the relative error due to rounding reduces to

% = (n —1)éjy.
This inequality predicts that rounding error will accumulate slowly as terms
are added to the sum. However, the analysis on which the bound was based
assumes that the worst happens all the time, and one might expect that the
factor » — 1 is an overestimate.

In fact, if we sum positive numbers with rounded arithmetic, the factor
will be an overestimate, since the individual rounding errors will be positive or
negative at random and will tend to cancel one other. On the other hand, if we
are summing positive numbers with chopped arithmetic, the errors will tend
to be in the same direction (downward), and they will reinforce one another.
In this case the factor n — 1 is realistic.

15. We don’t have to resort to a lengthy analysis to see how this phenomenon
comes about. Instead, let’s imagine that we take two six-digit numbers, and

7. Floating-Point Arithmetic 59

do two things with them. First, we round the numbers to five digits and sum
them exactly; second, we chop the numbers to five digits and once again sum
them exactly. The following table shows what happens.

number = rounded 4 error = chopped + error

1374.8 = 1375 - 02 = 1374 + 0.8

38564 = 3856 + 04 = 3856 + 04
total 5231.2 = 5231 + 02 = 5230 + 1.2

As can be seen from the table, the errors made in rounding have opposite
signs and cancel each other in the sum to yield a small error of 0.2. With
chopping, however, the errors have the same sign and reinforce each other to
yield a larger error of 1.2. Although we have summed only two numbers to
keep things simple, the errors in sums with more terms tend to behave in the
same way: errors from rounding tend to cancel, while errors from chopping
reinforce. Thus rounding is to be preferred in an algorithm in which it may be
necessary to sum numbers all having the same sign.

16. The above example makes it clear that you cannot learn everything about a
floating-point system by studying the bounds for its arithmetic. In the bounds,
the difference between rounding and chopping is a simple factor of two, yet
when it comes to sums of positive numbers the difference in the two arithmetics
is a matter of the accumulation of errors. In particular, the factor n — 1 in
the error bound (7.8) reflects how the error may grow for chopped arithmetic,
while it is unrealistic for rounded arithmetic. (On statistical grounds it can be
argued that the factor /n is realistic for rounded arithmetic.)

To put things in a different light, binary, chopped arithmetic has the same
bound as binary, rounded arithmetic with one less bit. Yet on the basis of
what we have seen, we would be glad to sacrifice the bit to get the rounding.

Lecture 8

Floating-Point Arithmetic

Cancellation

The Quadratic Equation

That Fatal Bit of Rounding Error
Envoi

Cancellation

1. Many calculations seem to go well until they have to form the difference
between two nearly equal numbers. For example, if we attempt to calculate
the sum

37654 + 25.874 — 37679 = 0.874

in five-digit floating-point, we get
(37654 + 25.874) = 37680

and
(37680 — 37679) = 1.

This result does not agree with the true sum to even one significant figure.

2. The usual explanation of what went wrong is to say that we cancelled most
of the significant figures in the calculation of fi(37860 — 37679) and therefore
the result cannot be expected to be accurate. Now this is true as far as it
goes, but it conveys the mistaken impression that the cancellation caused the
inaccuracy. However, if you look closely, you will see that no error at all was
made in calculating f1(37860 — 37679). Thus the source of the problem must
lie elsewhere, and the cancellation simply revealed that the computation was
in trouble.

In fact, the source of the trouble is in the addition that preceded the cancel-
lation. Here we computed f1(37654+25.874) = 37680. Now this computation is
the same as if we had replaced 25.874 by 26 and computed 37654 + 26 exactly.
In other words, this computation is equivalent to throwing out the three digits
0.874 in the number 25.874. Since the answer consists of just these three digits,
it is no wonder that the final computed result is wildly inaccurate. What has
killed us is not the cancellation but the loss of important information earlier
in the computation. The cancellation itself is merely a death certificate.

The quadratic equation

3. To explore the matter further, let us consider the problem of solving the
quadratic equation
2 —br+c=0,

61

62 Afternotes on Numerical Analysis

whose roots are given by the quadratic formula

bV —dc

r
2

If we take
b=3.6778 and ¢ = 0.0020798,

then the roots are

r1 = 3.67723441190. .. and ro = 0.00056558809. .. .

4. An attempt to calculate the smallest root in five-digit arithmetic gives the
following sequence of operations.

1. b? : 1.3526 - 10*!
2. 4e : 8.3192.1073
3. b —4c . 1.3518 - 107!
4. Vb —4c : 3.6767 1070 (8.1)
5. b—+Vb2 —4c : 1.1000 - 1073
6. (b—+b2—4c)/2 : 5.5000-10~*

The computed value 0.00055000 differs from the true value 0.000565... of the
root in its second significant figure.

5. According to the conventional wisdom on cancellation, the algorithm failed
at step 5, where we canceled three-odd significant figures in computing the
difference 3.6778 — 3.67667. However, from the point of view taken here, the
cancellation only reveals a loss of information that occurred earlier. In this
case the offending operation is in step 3, where we compute the difference

f1(13.453 — 0.0083192) = 13.518.

This calculation corresponds to replacing the number 0.0083192 by 0.008 and
performing the calculation exactly. This is in turn equivalent to replacing the
coefficient ¢ = 0.0020798 by ¢ = 0.002 and performing the calculation exactly.
Since the coefficient ¢ contains critical information about 79, it is no wonder
that the change causes the computed value of 72 to be inaccurate.

6. Can anything be done to save the algorithm? It depends. If we don’t save
¢ after using it in step 3, then the answer is we can do nothing: the numbers
that we have at hand, namely b and the computed value of b*> — 4c, simply do
not have the information necessary to recover an accurate value of 5. On the
other hand, if we keep ¢ around, then we can do something.

8. Floating-Point Arithmetic 63

7. The first thing to observe is that there is no problem in calculating the
largest root rq, since taking the plus sign in the quadratic formula entails no
cancellation. Thus after step 4 in (8.1) we can proceed as follows.

5" b+ Vb2 —4c : 7.3545-107°
6. ri=(b++b2—4c)/2 : 3.6773-1010

The result agrees with the true value of r1 to almost the last place.
To calculate r2, we next observe that ¢ = ri79, so that

c
Tg = —.
T1
Since we have already computed r; accurately, we may use this formula to
recover ro as follows.

7. ro=c/ry : 5.6558-107%

The computed value is as accurate as we can reasonably expect.

8. Many calculations in which cancellation occurs can be salvaged by rewriting
the formulas. The major exceptions are intrinsically ill-conditioned problems
that are poorly defined by their data. The problem is that the inaccuracies
that were built into the problem will have to reveal themselves one way or
another, so that any attempt to suppress cancellation at one point will likely
introduce it at another.

For example, the discriminant b? — 4c is equal to (r; —72)?, so that cancel-
lation in its computation is an indication that the quadratic has nearly equal
roots. Since f'(r1) = 2r; —b = r1 —r9, these nearby roots will be ill conditioned
(see §5.21).

That fatal bit of rounding error

9. Consider the behavior of the solution of the difference equation

T+1 = 2.25.’Ek — 0.5£L‘k_1, (8.2)
where
1 1
T1=g and o = o (8.3)
The solution is
A 123
xk_Ta Rt R

Consequently the computed solution should decrease indefinitely, each succes-
sive component being a fourth of its predecessor.

10. Figure 8.1 contains a graph of log, z; as a function of k. Initially this

64 Afternotes on Numerical Analysis

=201 8

log2[x(k)]

25+ 4

230F 4

35+ 4

40
0

Figure 8.1. Computed solution of xy11 = 2.25x) — 0.5z 1.

graph descends linearly with a slope of —2, as one would expect of any function
proportional to (1/4)%. However, at k = 20 the graph turns around and begins
to ascend with a slope of one. What has gone wrong?

11. The answer is that the difference equation (8.2) has two principal solutions:

1 k
(Z) and 2k

Any solution can be expanded as a linear combination of these two solutions;
i.e., the most general form of a solution is

o(3) e

Now in principle, the z; defined by (8.2) and (8.3) should have an expansion
in which 8 = 0; however, because of rounding error, 8 is effectively nonzero,
though very small. As time goes by, the influence of this solution grows until
it dominates. Thus the descending part of the graph represents the interval
in which the contribution of 2% is negligible, while the ascending portion
represents the interval in which 42¥ dominates.

12. Tt is possible to give a formal rounding-error analysis of the computation
of z;. However, it would be tedious, and there is a better way of seeing

8. Floating-Point Arithmetic 65

what is going on. We simply assume that all the rounding error is made at the
beginning of the calculation and that the remaining calculations are performed
exactly.

Specifically, let us assume that errors made in rounding have given us z

and x4y that satisfy

1
z1= §(4+0 + 2—56)’

1
Ty = 5(471 + 2755)

(note that 27°¢ is the rounding unit for IEEE 64-bit arithmetic). Then the
general solution is

1
Ik — g(41—]{) + 2]{)—57).

The turnaround point for this solution occurs when
41k — gh=5T

which gives a value of k between nineteen and twenty. Obviously, our simplified
analysis has predicted the results we actually observed.

13. All this illustrates a general technique of wide applicability. It frequently
happens that an algorithm has a critical point at which a little bit of rounding
error will cause it to fail later. If you think you know the point, you can
confirm it by rounding at that point but allowing no further rounding errors.
If the algorithm goes bad, you have spotted a weak point, since it is unlikely
that the rounding errors you have not made will somehow correct your fatal
bit of error.

Envoi

14. We have now seen three ways in which rounding error can manifest it-
self.

1. Rounding error can accumulate, as it does during the computation
of a sum. Such accumulation is slow and is usually important only
for very long calculations.

2. Rounding error can be revealed by cancellation. The occurrence of
cancellation is invariably an indication that something went wrong
earlier in the calculation. Sometimes the problem can be cured by
changing the details of the algorithm; however, if the source of the
cancellation is an intrinsic ill-conditioning in the problem, then it’s
back to the drawing board.

3. Rounding error can be magnified by an algorithm until it dominates
the numbers we actually want to compute. Again the calculation
does not have to be lengthy. There are no easy fixes for this kind of
problem.

66 Afternotes on Numerical Analysis

It would be wrong to say that these are the only ways in which rounding
error makes itself felt, but they account for many of the problems observed in
practice. If you think you have been bitten by rounding error, you could do
worse than ask if the problem is one of the three listed above.

® [Linear Equations

67

Lecture 9

Linear Equations

Matrices, Vectors, and Scalars
Operations with Matrices
Rank-One Matrices
Partitioned Matrices

Matrices, vectors, and scalars

1. An m X n matriz A is a rectangular array of numbers of the form

a1 ai2 o a1,n—-1 ain
a21 a22 Tt a2,n—1 a2n
A= :
OGm—-1,1 Gp-12 °°° Om—-1mn—-1 Om—-1n
Gm1 am2 T Am,n—1 Qmn

We write A € R™*™. If m = n, so that A is square, we say that A is of order
n.

2. The numbers a;; are called the elements of the matrix A. By convention, the
first subscript, 7, called the row indez, indicates the row in which the element
lies. The second subscript, j, called the column indez, indicates the column in
which the element lies. Indexing usually begins at one, which makes for minor
problems in the language C, whose arrays begin with an index of zero.

3. An n-vector z is an array of the form

T

Z2
Tr =

Tn

We write z € R". The number n is called the dimension. The numbers z; are
called the components of x.

4. Note that by convention, all vectors are column vectors; that is, their
components are arranged in a column. Objects like (z; z2 -+) whose
components are arranged in a row are called row vectors. We generally write
row vectors in the form zT (see the definition of the transpose operation below
in §9.18).

5. We will make no distinctions between R™*! and R™: it is all the same to
us whether we call an object an n X 1 matrix or an n-vector. Similarly, we will

69

70 Afternotes on Numerical Analysis

not distinguish between the real numbers R, also called scalars, and the set of
1-vectors, and the set of 1 X 1 matrices.

6. Matrices will be designated by upper-case Latin or Greek letters, e.g., A,
A, etc. Vectors will be designated by lower-case Latin letters, e.g., z, y, etc.
Scalars will be designated by lower-case Latin and Greek letters. Some attempt
will be made to use an associated lower-case letter for the elements of a matrix
or the components of a vector. Thus the elements of A will be a;; or possibly
«;j. In particular note the association of £ with z and n with y.

Operations with matrices

7. Matrices are more than static arrays of numbers: they have an algebra. We
will be particularly concerned with the following four operations with matri-
ces:

multiplication by a scalar,
the matrix sum,

the matrix product,

-~ W o=

the matrix transpose.

8. Any matrix A can be multiplied by a scalar u. The result is the matrix pA
defined by

pA = (paij).

9. If A and B have the same dimensions, then their sum is the matrix A + B
defined by
A+ B= (aij + bij).

We express the fact that A and B have the same dimensions by saying that
their dimensions are conformal for summation.

10. A matrix whose elements are all zero is called a zero matrix and is written
0 regardless of its dimensions. It is easy to verify that

A+0=0+A4=0,

so that 0 is an additive identity for matrices.

11. If Ais an [X m matrix and B is an m X n matrix, then the product AB
is an [X n matrix defined by

AB = (Z aikbkj> .
k=1

9. Linear Equations 71

Note that for the product AB to be defined, the number of columns of A
must be the same as the number of rows of B. In this case we say that the
dimensions conform for multiplication.

12. The matrix product is so widely used that it is useful to have a recipe for
doing the bookkeeping. Here is mine. To find the (2, 3)-element of the matrix

product

1
bir bi2 biz bia bis
ain a1z aiy au) [L0 s
21 b bsg bos bos
3
az azs azgy aszs) |, bz bys bos bss |
1
bsr baz biz bas bas

1 2 3 4
ag1 QA Qg3 0G24 b

place your left index finger on as; and your right index finger on b3 (these
are the elements with the superscript one). As you do so, say, “Times.” Now
move your fingers to ago and be3, saying “plus” as you move them and “times”
as you land. Continue in this manner, alternating “plus” and “times.” At the
end you will have computed

a21b13 + a22bo3 + az3b3z + az4bss,
which is the (2, 3)-element. You may feel foolish doing this, but you’ll get the
right answer.

13. The matrix I, of order n whose diagonal elements are one and whose
off-diagonal elements are zero [we write I, = diag(1,1,...,1)] is called the
identity matriz. If A is any m X n matrix, then it is easy to verify that

I, A = A,

so that identity matrices are multiplicative identities. When the context makes
the order clear, we drop the subscript and simply write I for an identity matrix.

14. The identity matrix is a special case of a useful class of matrices called
diagonal matrices. A matrix D is diagonal if its only nonzero entries lie on its
diagonal, i.e., if d;; = 0 whenever i # j. We write

diag(dy,...,d,)

for a diagonal matrix whose diagonal entries are di, ..., dy,.

15. Since we have agreed to regard an n-vector as an n X 1 matrix, the above
definitions can be transferred directly to vectors. Any vector can be multiplied
by a scalar. Two vectors of the same dimension may be added. Only 1-vectors,
i.e., scalars, can be multiplied.

16. A particularly important case of the matrix product is the matrix-vector
product Az. Among other things it is useful as an abbreviated way of writing

72 Afternotes on Numerical Analysis

systems of equations. Rather than say that we shall solve the system

b1 = a1y + a12I9 + e+ A1p, Ty
by = az171 + agezs + - + az Ty

bp = an1z1 + an2T2 + - - + Appy
we can simply write that we shall solve the equation
b= Az,

where A is of order n.

17. Both the matrix sum and the matrix product are associative; that is,
(A+B)+C=A+ (B+C) and (AB)C = A(BC). The product distributes
over the sum; e.g., A(B + C) = AB + AC. In addition, the matrix sum is
commutative: A + B = B + A. Unfortunately the matrix product is not
commutative: in general AB # BA. It is easy to forget this fact when you are
manipulating formulas involving matrices.

18. The final operation we shall use is the matrix transpose. If A is an m xn
matrix, then the transpose of A is the n x m matrix AT defined by

AT = (a50).
Thus the transpose is the matrix obtained by reflecting a matrix through its
diagonal.

19. The transpose interacts nicely with the other matrix operations:

Lo (pA)T = p(A"),
2. (A+B)T=A4T + BT,
3. (AB)T = BTAT.

Note that the transposition reverses the order of a product.

T

20. If z is a vector, then z* is a row vector. If z and y are n-vectors, then

y'z =21y + T2y2 + - + Tn¥n

is a scalar called the inner product of x and y. In particular the number

T

[zl = Vata

is the Euclidean length (or two-norm) of the vector z.

9. Linear Equations 73

Rank-one matrices

21. If z,y # 0, then any matrix of the form

T1Y1 Z1Y2 T1Y3
ZT2Y1 X2Y2 IT2Y3

_ T _
W=y = I3Y1 T3Y2 T3Y3

(9.1)

has rank one; that is, its columns span a one-dimensional space. Conversely,
any rank-one matrix W can be represented in the form zy"'. Rank-one matrices
arise frequently in numerical applications, and it’s important to know how to
deal with them.

22. The first thing to note is that one does not store a rank-one matrix as a
matrix. For example, if z and y are n-vectors, then the matrix zy™ requires n?
locations to store, as opposed to 2n locations to store x and y. To get some idea
of the difference, suppose that n = 1000. Then zyT requires one million words
to store as a matrix, as opposed to 2000 to store z and y individually—the
storage differs by a factor of 500.

23. If we always represent a rank-one matrix W = zyT by storing = and ,
the question arises of how we perform matrix operations with W — how, say,
we can compute the matrix-vector product ¢ = Wb? An elegant answer to this
question may be obtained from the equation

c=Wb= (zy")b=z(y'b) = (y"b)z, (9.2)

in which the last equality follows from the fact that y'b is a scalar.
This equation leads to the following algorithm.

1. Compute p=y'b

2. Compute ¢ = uz (9-3)

This algorithm requires 2n multiplications and n — 1 additions. This should be
contrasted with the roughly n? multiplications and additions required to form
an ordinary matrix vector product.

24. The above example illustrates the power of matrix methods in deriving
efficient algorithms. A person contemplating the full matrix representation
(9.1) of zy"™ would no doubt come up with what amounts to the algorithm (9.3),
albeit in scalar form. But the process would be arduous and error prone. On
the other hand, the simple manipulations in (9.2) yield the algorithm directly
and in a way that relates it naturally to operations with vectors. We shall see
further examples of the power of matrix techniques in deriving algorithms.

74 Afternotes on Numerical Analysis

Partitioned matrices

25. Partitioning is a device by which we can express matrix operations at a
level between scalar operations and operations on full matrices. A partition
of a matrix is a decomposition of the matrix into submatrices. For example,
consider the matrix

a1 a2 ‘ a3 as ais ‘ a6 a17
a1 Q22 | @23 Q24 Q25 | Q26 Q27
A= a3 a3 |ass azs ass |aze asy
a4l Q42 | G43 Q44 Q45 | G4 Q47
as1 Gs2 | G53 G54 G55 | G56 Q57

The partitioning induced by the lines in the matrix allows us to write the

matrix in the form
A Al A Az
A9y Age Agsz)’

a1l a2 a13 a4 0ais
AH = , A12 == ; etc.
a21 G22 a23 Q24 0425

26. The power of partitioning lies in the following fact.

where

If the partitions of two matrices are conformal, the submatrices
may be treated as scalars for the purposes of performing matrix
operations.

For example, if the partitions below are conformal, we have

A An n Biy Biz\ _ (Au+Bu Aia+ Brp
Ag1 Ao By1 B Ag1+ Ba1 A+ By)’
Similarly, we may write a matrix product in the form

Ay A\ (Bu B2\ _ (AuBu+ AiBa AunBip+ A1pBo
Ao Age) \Bai Ba A9 Bi1 + AgeBoy A1 Big + AxpBag)’

again provided the partitions are conformal. The one thing to be careful about
here is that the products of the submatrices do not commute like scalar prod-
ucts.

27. As a simple but important example of the use of matrix partitions, consider
the matrix-vector product Az, where A is of order n. If we partition A by
columns in the form

A= (a1 a2 ... ap),

9. Linear Equations

then
&1
&2
Ax:(al as ... an) . :£1a1+§2a2+"'+fnan-

én

From this formula we can draw the following useful conclusion.

The matrix-vector product Az is the linear combination of the
columns of A whose coefficients are the components of z.

75

Lecture 10

Linear Equations

The Theory of Linear Systems
Computational Generalities
Triangular Systems

Operation Counts

The theory of linear systems

1. For some time to come we will be concerned with the solution of the equation

Az = b, (10.1)

where A is of order n. Before attempting to solve any numerical problem it
is a good idea to find out if it has a unique solution. Fortunately, the theory
of linear systems provides a number of conditions that can be used to check if
(10.1) has a solution.

Let A be of order n. Then the following statements are equiva-
lent.

For any vector b, the system Az = b has a solution.
If a solution of the system Ax = b exists, it is unique.
Forall z, Az =0 = z =0.

The columns (rows) of A are linearly independent.
There is a matrix A~ ! such that A "'A=AA"! =1.
det(A) # 0.

AR o S

2. Although the above conditions all have their applications, as a practical
matter the condition det(A) # 0 can be quite misleading. The reason is that
the determinant changes violently with minor rescaling. Specifically, if A is of
order n, then

det(cA) = o™ det(A).

To see the implications of this equality, suppose that n = 30 (rather small by
today’s standards) and that det(A) = 1. Then

det(0.1- A) =107,

In other words, dividing the elements of A by ten reduces the determinant by
a factor of 10730, It is not easy to determine whether such a volatile quantity

7

78 Afternotes on Numerical Analysis

is truly zero — which is why the determinant is used primarily in theoretical
settings.

3. A matrix A satisfying any of the conditions of §10.1 is said to be nonsin-
gular. If A is nonsingular, the matrix A~! guaranteed by the fifth condition is
called the inverse of A. The inverse interacts nicely with matrix operations of
multiplication and transposition.

Let A and B be of order n.

1. The product AB is nonsingular if and only if A and B are
nonsingular. In this case

(AB)"' =B7tA7L
2. The matrix A" is nonsingular and

(A7) = (47"

A convenient shorthand for (A%)~!is AT,

Computational generalities

4. The solution of the linear system Az = b can be written in terms of the
matrix inverse as follows

A7 =AY (Az) = Iz = .

This suggests the following algorithm for solving linear systems.

1. Compute C = A™!
2. z=0Cb

With very few exceptions, this is a bad algorithm. In fact, you would not even

use it for scalar equations. For example, if we were to try to compute the
solution of 10z = 2 in this way, we would end up with

1. ¢=1/10
2. =2

(10.2)

If instead we write x = 2/10, we save an operation and a little rounding
error. The situation is the same with the general invert-and-multiply algorithm
(10.2), except that (10.2) is much more expensive than its alternatives and a
lot less stable.

5. What are the alternatives? Later we are going to show how to factor a
matrix A in the form”
A=1LU,

"This is a slight oversimplification. For stability we have to interchange rows of A as we
factor it.

10. Linear Equations 79

where L is lower triangular (i.e., its elements are zero above the diagonal)
and U is upper triangular (its elements are zero below the diagonal). This
factorization is called an LU decomposition of the matrix A. Now if A is
nonsingular, then so are L and U. Consequently, if we write the system Az = b
in the form LUz = b, we have

Ur=L"'b=y. (10.3)
Moreover, by the definition of y
Ly=b. (10.4)

Thus, if we have a method for solving triangular systems, we can use the
following algorithm to solve the system Az = b.

1. Factor A= LU
2. Solve Ly =b
3. Solve Uz =1y

To implement this general algorithm we must be able to factor A and to
solve triangular systems. We will begin with triangular systems.

Triangular systems

6. A matrix L is lower triangular if
1<] — EZ‘]‘ =0.

This is a fancy way of saying that the elements of L lying above the diagonal
are zero. For example, a lower triangular matrix of order five has the form

i1 0 0 0 0
ly1 fog O 0 0
L= |43 {3 f33 0 0
Ly lyo Uy Las O
ls1 flso Us3 Us54 Uss

A matrix U is upper triangular if
1>7] — U5 = 0.
The elements of an upper triangular matrix lying below the diagonal are zero.

7. For definiteness we will consider the solution of the lower triangular system
Lz = b of order n. The basic fact about such systems is that if the diagonal
elements ¢; of L are nonzero, then L is nonsingular and the system has a
unique solution. We shall establish this fact by describing an algorithm to
compute the solution.

80 Afternotes on Numerical Analysis

8. The algorithm is sufficiently well illustrated by the case n = 5. We begin
by writing the system Lz = b in scalar form.

by =f1111

by = £a171 + laox

by = 3171 + £3072 + L3373

by = Ly1x1 + Lagxo + L4373 + Lag1y

bs = 5171 + L5012 + L5323 + sy + L5525

The first equation in this system involves only z1 and may be solved forthwith:
=0

Knowing the value of x1, we can substitute it into the second equation and
solve to get

I1

o — by — £o121
2 — .
a2

Substituting 1 and z2 into the third equation and solving, we get
by —Llg111 — L3010

r3 = .
L33

Continuing in this manner, we get

oy — by — L4171 — Laowo — ly313
L=

Lyg

and
b5 — 5171 — lsowe — U533 — L5414
Iy — / ’
55

which completes the solution of the system. Since by hypothesis the diagonal
elements /;; are nonzero, these formulas uniquely determine the ;.

9. The procedure sketched above is quite general and leads to the follow-
ing forward-substitution algorithm for solving a lower triangular system. The
lower triangular matrix is contained in a doubly subscripted array 1. The
components of the solution overwrite the right-hand side b.2
for (i=1; i<=n; i++){
for (j=1; j<i; j++)
b[i] = b[i] - 1[1[j1*b[j]; (10.5)
bl[i] = bl[il/1[i]1[i];
}

8We have already noted that the indexing conventions for matrices, in which the first
element is the (1,1)-element, are inconsistent with C array conventions in which the first
element of the array a is a[0] [0]. In most C code presented here, we will follow the matrix
convention. This wastes a little storage for the unused part of the array, but that is a small
price to pay for consistency.

10. Linear Equations 81

Operation counts

10. To get an idea of how much it costs to solve a triangular system, let us
count the number of multiplications required by the algorithm. There is one
multiplication in the statement

b[i]l = b[i]l - 1[i1[j1*b[j];

This statement is executed for j running from 1 to i and for i running from
1 to n. Hence the total number of multiplications is

XH:XZ: 1= Xn:Z = Ln; Do % (10.6)

i=1j5=1 i=1

the last approximation holding for large n. There are a like number of addi-
tions.

11. Before we try to say what an operation count like (10.6) actually means,
let us dispose of a technical point. In deriving operation counts for matrix
processes, we generally end up with sums nested two or three deep, and we
are interested in the dominant term, i.e., the term with the highest power of
n. We can obtain this term by replacing sums with integrals and adjusting the
limits of integration to make life easy. If this procedure is applied to (10.6),

the result is)
n % n n?
/ /1djdi:/ idi=",
0o Jo 0 2

which is the dominant term in the sum (10.6).

12. It might be thought that one could predict the running time of an algorithm
by counting its arithmetic operations and multiplying by the time required for
an operation. For example, if the combined time for a floating-point addition
and multiplication is «, then it might be expected that it would take time ”ZTO‘
to solve a triangular system of order n.

Unfortunately, this expectation is not realized in practice. The reason is
that the algorithm is busy with tasks other than floating-point arithmetic. For
example, the reference to 1[i] [j] requires that an element of 1 be retrieved
from memory. Again, the test j<i must be performed each time the inner loop
is executed. This overhead inflates the time, so that an operation count based
solely on arithmetic will underestimate the total time.

Nonetheless, operation counts of the kind we have introduced here can be
useful. There are two reasons.

1. The additional overhead in an algorithm is generally proportional to
the number of arithmetic operations. Although an arithmetic count
does not predict the running time, it predicts how the running time
will increase with n—linearly, quadratically, etc.

82 Afternotes on Numerical Analysis

2. In consequence, if algorithms have different orders of complexity —
that is, dominant terms with different powers of n—then the one
with the lower order will ultimately run faster.

13. Some care must be taken in comparing algorithms of the same order.
The presumption is that the one with the smaller order constant will run
faster. Certainly, if the order constants differ significantly, this is a reasonable
assumption: we would expect an algorithm with a count of 2n? to outperform
an algorithm with a count of 100n2. But when the order constants are nearly
equal, all bets are off, since the actually order constant will vary according to
the details of the algorithm. Someone who says that an algorithm with a count
of n? is faster than an algorithm with a count of 2n? is sticking out the old
neck.

Lecture 11

Linear Equations

Memory Considerations
Row-Oriented Algorithms

A Column-Oriented Algorithm
General Observations

Basic Linear Algebra Subprograms

Memory considerations

1. Virtual memory is one of the more important advances in computer systems
to come out of the 1960s. The idea is simple, although the implementation
is complicated. The user is supplied with very large wirtual memory. This
memory is subdivided into blocks of modest size called pages. Since the entire
virtual memory cannot be contained in fast, main memory, most of its pages
are maintained on a slower backing store, usually a disk. Only a few active
pages are contained in the main memory.

When an instruction references a memory location, there are two possibil-
ities.

1. The page containing the location is in main memory (a hit). In this
case the location is accessed immediately.

2. The page containing the location is not in main memory (a miss).
In this case the system selects a page in main memory and swaps it
with the one that is missing.

2. Since misses involve a time-consuming exchange of data between main
memory and the backing store, they are to be avoided if at all possible. Now
memory locations that are near one another are likely to lie on the same page.
Hence one strategy for reducing misses is to arrange to access memory sequen-
tially, one neighboring location after another. This is a special case of what is
called locality of reference.

Row-oriented algorithms

3. The algorithm (10.5) is one that preserves locality of reference. The reason
is that the language C stores doubly subscripted arrays by rows, so that in the
case n = 5 the matrix L might be stored as follows.

2110000221 £22000431 £33 43300841 Lao €43 L4 0251 Uso L3 Us4 Uss

83

84 Afternotes on Numerical Analysis

Now if you run through the loops in (10.5), you will find that the elements of
L are accessed in the following order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2110000251 £32 000431 €32 £33 00841 Lyo L4344 0 €51 Lo U53 L5455

Clearly the accesses here tend to be sequential. Once a row is in main memory,
we march along it a word at a time.

4. A matrix algorithm like (10.5) in which the inner loops access the elements
of the matrix by rows is said to be row oriented. Provided the matrix is stored
by rows, as it is in C, row-oriented algorithms tend to interact nicely with
virtual memories.

5. The situation is quite different with the language FORTRAN, in which ma-
trices are stored by columns. For example, in FORTRAN the elements of the
matrix L will appear in storage as follows.

L1181 £31 L4 U510 Log £39 £yo €52 00 £33 £43 £53000 4844 2540000 255

If the FORTRAN equivalent of algorithm (10.5) is run on this array, the memory
references will occur in the following order.

1 2 4 711 3 5 8 12 6 9 13 10 14 15
L1181 £31 L4151 0 Log €39 £yo €52 00 £33 £43 53000444 £540000 255

Clearly the references are jumping all over the place, and we can expect a high
miss rate for this algorithm.

A column-oriented algorithm

6. The cure for the FORTRAN problem is to get another algorithm — one that
is column oriented. Such an algorithm is easy to derive from a partitioned
form of the problem.

Specifically, let the system Lz = b be partitioned in the form

A 0 &1 _ (B
ly1 Ly) \z2 by)’

where Los is lower triangular. (Note that we now use the Greek letter A to
denote individual elements of L, so that we do not confuse the vector £9; =
(M1, .., 1) " with the element Ag;.) This partitioning is equivalent to the
two equations

A11é1 = i,

£21&1 + Logzo = by.

11. Linear Equations 85

The first equation can be solved as usual:

_ B
51—)\—11-

Knowing the first component &; of £ we can write the equation in the form
Loozo = by — &14a:- (11.1)

But this equation is a lower triangular system of order one less than the original.
Consequently we can repeat the above procedure and reduce it to a lower
triangular system of order two less than the original, and so on until we reach
a 1 x 1 system, which can be readily solved.

7. The following FORTRAN code implements this algorithm.
do 20 j=1,n
b(j) = b(3)/1(j,])
do 10 i=j+1,n

b(i) = b(i) - b(j)*1(i,]) (11-2)
10 continue
20 continue
At the jth iteration of the outer loop, the components zi, ..., z;_1 have
already been computed and stored in b(1), ..., b(j-1). Thus we have to

solve the system involving the matrix
Ajj 0 .
ti+1,5 Lj+1,5+1

b(j) = b(§)/1(j,])

The statement

overwrites b(j) with the first component of this solution. The loop
do 10 i=j+1,n
b(i) = b(i) - b(j)*1(i,])
10 continue
then adjusts the right-hand side as in (11.1). The algorithm then continues to
solve the smaller system whose matrix is Lj41,j+1-

8. Running through the algorithm, we find that the memory references to the
elements of L occur in the following order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
011 L1 U31 L4151 0 Log €30 £y 5900 £33 £43 £53000£44 £54 0000 55

Clearly, the references here are much more localized than in the row-riented
algorithm, and we can expect fewer misses.

86 Afternotes on Numerical Analysis

General observations on row and column orientation

9. Although we have considered row- and column-oriented algorithms in terms
of their interactions with virtual memories, many computers have more than
two levels of memory. For example, most computers have a limited amount of
superfast memory called a cache. Small blocks of main memory are swapped
in and out of the cache, much like the pages of a virtual memory. Obviously, an
algorithm that has good locality of reference will use the cache more efficiently.

10. It is important to keep things in perspective. If the entire matrix can fit into
main memory, the distinction between row- and column-oriented algorithms
becomes largely a matter of cache effects, which may not be all that important.
A megaword of memory can hold a matrix of order one thousand, and many
workstations in common use today have even more memory.

To illustrate this point, I ran row- and column-oriented versions of Gaus-
sian elimination (to be treated later in §13) coded in C on my SPARC IPC
workstation. For a matrix of order 1000, the row-oriented version ran in about
690 seconds, while the column-oriented version took 805 seconds. Not much
difference. On a DEC workstation, the times were 565 seconds for the row-
oriented version and 1219 seconds for the column-oriented version. A more
substantial difference, but by no means an order of magnitude.’

11. Finally, the problems treated here illustrate the need to know something
about the target computer and its compilers when one is designing algorithms.
An algorithm that runs efficiently on one computer may not run well on an-
other. As we shall see, there are ways of hiding some of these machine de-
pendencies in specially designed subprograms; but the general rule is that
algorithms have to run on actual machines, and machines have idiosyncrasies
which must be taken into account.

Basic linear algebra subprograms

12. One way of reducing the dependency of algorithms on the characteristics
of particular machines is to perform frequently used operations by invoking
subprograms instead of writing in-line code. The chief advantage of this ap-
proach is that manufacturers can provide sets of these subprograms that have
been optimized for their individual machines. Subprograms to facilitate matrix
computations are collectively known as Basic Linear Algebra Subprograms, or
BLAS for short.

13. To illustrate the use of the BLAS, consider the loop
for (j=1; j<i; j++)
b[i] = b[i] - 1[i]1[jI*b[j];

9The programs were compiled by the gcc compiler with the optimization flag set and were
run on unloaded machines.

11. Linear Equations 87

from the algorithm (10.5). In expanded form, this computes
b[i] = bl[i] - 1[iIJ[11*b[1] - 1[i]1[2]*b[2] - ...
- 1[iJ[i-1]*b[i-1];
that is, it subtracts the dot product of the vectors

1047 [1] b[1]
1[i1[2] b[2]
. an .
1041 [i-1] bli-1]

from b[i]. Consequently, if we write a little function
float dot(n, float x[], float y[])

{
float d=0;
for (i=0; i<n; i++)
d =d + x[i]*y[i]l;
return d;
}

we can rewrite (10.5) in the form
for (i=1; i<=n; i++)
b[i] = (b[i] - dot(i-1, &1L[il[1], &b[1]))/1[i][i];
Not only do we now have the possibility of optimizing the code for the function
dot, but the row-oriented algorithm itself has been considerably simplified.

14. As another example, consider the following statements from the column-
oriented algorithm (11.2).
do 10 i=j+1,n
b(i) = b(i) - b(j)*1(i,j)

10 continue
Clearly these statements compute the vector
b(j+1) 1(j+1,3)
b(j+2) 1(j+2,3)
b(n) 1(n,j)

Consequently, if we write a little FORTRAN program axpy (for az + y)
subroutine axpy(n, a, x, y)
integer n
real a, x(*), y(*)
do 10 i=1,n
y(i) = y(i) + a*x(1)
10 continue
return
end

88 Afternotes on Numerical Analysis

then we can rewrite the program in the form

do 20 j=1,n
b(j) = b(j)/1(j,j)
call axpy(n-j, -b(j), 1(j+1,j), b(j+1))
20 continue

Once again the code is simplified, and we have the opportunity to optimize
axpy for a given machine.

15. The programs dot and axpy are two of the most frequently used vector
BLAS; however, there are many more. For example, scal multiplies a vector
by a scalar, and copy copies a vector into the locations occupied by another.
It should be stressed that the names and calling sequence we have given in
these examples are deliberate oversimplifications, and you should read up on
the actual BLAS before writing production code.

Lecture 12

Linear Equations

Positive-Definite Matrices
The Cholesky Decomposition
Economics

Positive-definite matrices

1. A matrix A of order n is symmetric if AT = A, or equivalently if
a;5 = Qji, i,j:l,...,n.

Because of this structure a symmetric matrix is entirely represented by the
elements on and above its diagonal, and hence can be stored in half the mem-
ory required for a general matrix. Moreover, many matrix algorithms can be
simplified for symmetric matrices so that they have smaller operation counts.
Let us see what symmetry buys us for linear systems.

2. The best way to solve a linear system Az = b is to factor A in the form
LU, where L is lower triangular and U is upper triangular and then solve the
resulting triangular systems (see §10.5). When A is symmetric, it is reasonable
to expect the factorization to be symmetric; that is, one should be able to factor
A in the form A = RTR, where R is upper triangular. However, not just any
symmetric matrix has such a factorization.

To see why, suppose A is nonsingular and z # 0. Then R is nonsingular,
and y = Rx # 0. Hence,

2T Az = 2TRTRz = (Rz) T (Rz) = yTy = >y >0. (12.1)

Thus a nonsingular matrix A that can be factored in the form RTR has the
following two properties.

1. A is symmetric.

2. #0 = zTAz > 0. (12.2)

Any matrix with these two properties is said to be positive definite.'°

3. Positive-definite matrices occur frequently in real life. For example, a vari-
ant of the argument (12.1) shows that if X has linearly independent columns
then XTX is positive definite. This means, among other things, that positive-
definite matrices play an important role in least squares and regression, where
systems like (XT X)b = ¢ are common. Again, positive-definite matrices arise

10Warning: Some people drop symmetry when defining a positive-definite matrix.

89

90 Afternotes on Numerical Analysis

in connection with elliptic partial differential equations, which occur every-
where. In fact, no advanced student in the hard sciences or engineering can
fail to meet with a positive-definite matrix in the course of his or her studies.

4. Positive-definite matrices are nonsingular. To see this we will show that
Az =0 = z=0

(see §10.1). Suppose on the contrary that Az = 0 but z # 0. Then 0 =
x T Az, which contradicts the positive-definiteness of A. Thus z = 0, and A is
nonsingular.

5. Square matrices lying on the diagonal of a partitioned positive-definite
matrix are positive definite. In particular, if we partition A in the form

a ab
=0%)

then @ > 0 and A, is positive definite. To see that o > 0, set z = (1,0,...,0).

Then -
T _ a a 1y
0<z Aa;—(l())(a A*)<0>—a.

To see that A, is positive definite, let y # 0 and set 7 = (0 yT). Then

T
T . T a a O T
0<z A:E—(Oy)(a A*><y>_y Ay.

The Cholesky decomposition

6. We have seen that any nonsingular matrix A that can be factored in the
form RTR is positive definite. The converse is also true. If A is positive
definite, then A can be factored in the form A = RTR, where R is upper
triangular. If, in addition, we require the diagonal elements of R to be positive,
the decomposition is unique and is called the Cholesky decomposition or the
Cholesky factorization of A. The matrix R is called the Cholesky factor of
A. We are going to establish the existence and uniqueness of the Cholesky
decomposition by giving an algorithm for computing it.

7. We will derive the Cholesky algorithm in the same way we derived the
column-oriented method for solving lower triangular equations: by consider-
ing a suitable partition of the problem, we solve part of it and at the same
time reduce it to a problem of smaller order. For the Cholesky algorithm the
partition of the equation A = RTR is

aaT_pO p rt
a A,) \r RTJ\0 R,)"

12. Linear Equations 91

Writing out this equation by blocks of the partition, we get the three equations

1. a=p7

Equivalently,
L. p= \/aa
2. rT=ptaT, (12.3)
3. RTR,=A, —r".
The first two equations are, in effect, an algorithm for computing the first
row of R. The (1,1)-element p of R is well defined, since a > 0. Since p # 0,

rT is uniquely defined by the second equation.

The third equation says that R, is the Cholesky factor of the matrix
A, =A, —rmT=A, —a'tad”

[the last equality follows from the first two equations in (12.3)]. This matrix is
of order one less than the original matrix A, and consequently we can compute
its Cholesky factorization by applying our algorithm recursively. However, we
must first establish that A, is itself positive definite, so that it has a Cholesky
factorization.

8. The matrix A, is clearly symmetric, since
A = (A, — DY = AT — ¢DYIrT = A, — T
Hence it remains to show that for any nonzero vector y
yTAy = yT Ay — a7 H(aTy)? > 0.

To do this we will use the positive-definiteness of A. If n is any scalar, then

0<(ny" (") (7) = an® +2a"yn +y" Ay
a A, \y o
If we now set n = —a~'a'y, then it follows after a little manipulation that

0<an’+2na'y+y Ay=y"Ay—a'(a"y)?
which is what we had to show.

9. Before we code the algorithm sketched above, let us examine its relation
to an elimination method for solving a system of equations Az = b. We begin

by writing the equation A, = A, — o taaT in scalar form as follows:

A -1 -1
Qi = Qi — Qpq 0005 = Qg5 — Oy QG100 5-

92 Afternotes on Numerical Analysis

Here we have put the subscripting of A back into the partition, so that a = a1
and a* = (@19,...,01,). The second equality follows from the symmetry of
A.

Now consider the system

01171 + 012%2 + 1373 + 1474 = by
2171 + QooTo + 2373 + Qo4Ty = by
Q3171 + Q32T + 3373 + 3474 = b3
04171 + 0uaT2 + 1a3T3 + uaTs = by

If the first equation is solved for x1, the result is
T1 = ajf (b1 — Q1272 — Q1373 — Q14T4).

Substituting z; in the last three of the original equations and simplifying, we
get

(o2 — 011_1104210412)362 + (23 — 051_1104210413)$3 + (o4 — af11a21a14)x4
= b2 — al_llaglbl
(39 — 041_1104310412)372 + (a33 — al_1104310413)$3 + (034 — 041_110431014)374

_ 124
= b3 — a111a31b1 ()

-1 -1 -1
(aap — oy agnai)e + (043 — apy agraaz)rs + (s — oq7 u1004) T4
-1

In this way we have reduced our system from one of order four to one of order
three. This process is called Gaussian elimination.

Now if we compare the elements o;; — o7 i o of the matrix A produced
by the Cholesky algorithm with the coefficients of the system (12.4), we see
that they are the same. In other words, Gaussian elimination and the Cholesky
algorithm produce the same submatrix, and to that extent are equivalent. This
is no coincidence: many direct algorithms for solving linear systems turn out
to be variants of Gaussian elimination.

10. Let us now turn to the coding of Cholesky’s algorithm. There are two
ways to save time and storage.

1. Since A and A, are symmetric, it is unnecessary to work with the
lower half—all the information we need is in the upper half. The
same applies to the other submatrices generated by the algorithm.

2. Once « and aT have been used to compute p and rT, they are no
longer needed. Hence their locations can be used to store p and 7.
As the algorithm proceeds, the matrix R will overwrite the upper
half of A row by row.

12. Linear Equations 93

11. The overwriting of A by R is standard procedure, dating from the time
when storage was dear and to be conserved at all costs. Perhaps now that
storage is bounteous, people will quit evicting A and give R a home of its own.
Time will tell.

12. The algorithm proceeds in n stages. At the first stage, the first row of
R is computed and the (n — 1) x (n — 1) matrix A, in the southeast corner
is modified. At the second stage, the second row of R is computed and the
(n — 2) X (n — 2) matrix in the southeast corner is modified. The process
continues until it falls out of the southeast corner. Thus the algorithm begins
with a loop on the row of R to be computed.

do 40 k=1,n

At the beginning of the kth stage the array that contained A has the form
illustrated below for n = 6 and k = 3:

P11 P12 P13 P14 P15 Pl6

0 p22 p23 p2a P25 P26
0 0 a33 azys azgs ase
0 0 0 oua ous o
0 0 0 0 a5 O56
0 0 0 0 0 Q926

The computation of the kth row of R is straightforward:

a(k,k) = sqrt(a(k,k))
do 10 j=k+1,n
a(k,j) = a(k,j)/ak,k)
10 continue

At this point the array has the form

P11 P12 P13 P14 P15 P16
0 p22 p23 pos p25 P26
0 O p33 p3sa p3s P36
0 0 0 Q44 O45 Oy
0 0 0 0 (0775330 0 %51
0 0 0 0 0 a6
We must now adjust the elements beginning with ws4. We will do it by
columns.
do 30 j=k+1,n
do 20 i=k+1,]j
a(i,j) = a(i,j) - a(k,i)*a(k,j)
20 continue
30 continue

94 Afternotes on Numerical Analysis

Finally we must finish off the loop in k.
40 continue

Here is what the algorithm looks like when the code is assembled in one
place.

do 40 k=1,n
a(k,k) = sqgrt(ak,k))
do 10 j=k+1,n
a(k,j) = a(k,j)/a(k,k)
10 continue
do 30 j=k+1,n
do 20 i=k+1,j
a(i,j) = a(i,j) - a(k,i)*a(k,j)
20 continue
30 continue
40 continue

Economics

13. Since our code is in FORTRAN, we have tried to preserve column orientation
by modifying A, by columns. Unfortunately, this strategy does not work. The
kth row of R is stored over the kth row of A, and we must repeatedly cross
a row of A in modifying A,. The offending reference is a(k,i) in the inner
loop.

do 20 i=k+1,j
a(i,j) = a(i,j) - a(k,i)*a(k,j)
20 continue
There is really nothing to be done about this situation, unless we are willing
to provide an extra one-dimensional array — call it r. We can then store the
current row of R in r and use it to adjust the current A,. This results in the
following code.

do 40 k=1,n
a(k,k) = sqrt(a(k,k))
do 10 j=k+1,n
a(k,j) = a(k,j)/a(k,k)
r(j) = a(k,j)
10 continue
do 30 j=k+1,n
do 20 i=k+1,j
a(i,j) = a(i,j) - r(D*r(j)
20 continue
30 continue
40 continue

12. Linear Equations 95

The chief drawback to this alternative is that it requires an extra parameter
in the calling sequence for the array r.

A second possibility is to work with the lower half of the array A and
compute L = RT. For then the rows of R become columns of L.

14. The integration technique of §10.11 gives an operation count for the
Cholesky algorithm as follows. The expression

a(i,j) = a(i,j) - r(@)*r(j)
in the inner loop contains one addition and one multiplication. It is executed

for k=k+1, j, j=k+1,n, and k=1,n. Consequently the number of additions and
multiplications will be approximately

n o 1
///didjdk:—n3.
0o Jk Jk 6

15. The fact that the Cholesky algorithm is an O(n?) algorithm has important
consequences for the solution of linear systems. Given the Cholesky decompo-
sition of A, we solve the linear system Ax = b by solving the two triangular
systems

1. RTy=ho,

2. Rz =y.

Now a triangular system requires %nQ operations to solve, and the two systems

together require n? operations. To the extent that the operation counts reflect
actual performance, we will spend more time in the Cholesky algorithm when

—n® > n?

6

or when n > 6. For somewhat larger n, the time spent solving the triangular
systems is insignificant compared to the time spent computing the Cholesky
decomposition. In particular, having computed the Cholesky decomposition
of a matrix of moderate size, we can solve several systems having the same
matrix at practically no extra cost.

16. In §10.4 we have deprecated the practice of computing a matrix inverse
to solve a linear system. Now we can see why. A good way to calculate the
inverse X = (z1 z2 --- z,) of a symmetric positive-definite matrix A is to
compute the Cholesky decomposition and use it to solve the systems

Az; = e, i=12,...,n,

where e; is the jth column of the identity matrix. Now if these solutions
are computed in the most efficient way, they require %n?’ additions and mul-
tiplications — twice as many as the Cholesky decomposition. Thus the invert-
and-multiply approach is much more expensive than using the decomposition

directly to solve the linear system.

Lecture 13

Linear Equations

Inner-Product Form of the Cholesky Algorithm
Gaussian Elimination

Inner-product form of the Cholesky algorithm

1. The version of the Cholesky algorithm just described is sometimes called
the outer-product form of the algorithm because the expression A, = A, —aad”
involves the outer product aa™. We are now going to describe a form whose
computational unit is the inner product.

2. The inner-product form of the algorithm successively computes the Cholesky
decompositions of the leading principal submatrices

all a9 a1 Q12 Q13
A3 = |aa g a3 |,
Q21 Q22

Ay = (a11), A = <
Q31 Q32 (033

To get things started, note that the Cholesky factor of A; is the scalar p1; =

A/ 11-

Now assume that we have computed the Cholesky factor Ry 1 of Ag_ 1,
and we wish to compute the Cholesky factor Ry of Ay. Partition the equation
A = Rng in the form

Ag—1 ag | _ R, 0 Ry i)
ap Qg TR Prk 0 prk

This partition gives three equations:

T
1. Ap_1=R,_Ri_1,
_ pT
2. a]c — kal’l"k,
— T 2
3. Qg =TETE + Php-

The first equation simply confirms that Rj_; is the Cholesky factor of
Aj_1. But the second and third equations can be turned into an algorithm for
computing the kth column of R: namely,

1. Solve Rz_ﬂk = ag

2. ek =\/Qkk — Ti Tk

Since RE_I is a lower triangular matrix, the system in the first step can be easily
solved. Moreover, since Ay is positive definite, pg; must exist; i.e., agg — r;cfrk

97

98 Afternotes on Numerical Analysis

must be greater than zero, so that we can take its square root. Thus we can
compute the Cholesky factors of A;, A, A3, and so on until we reach A, = A.
The details are left as an exercise.!!

3. The bulk of the work done by the inner-product algorithm is in the solution
of the system RE_lrk = ay, which requires %kQ additions and multiplications.
Since this solution step must be repeated for k = 1,2, ..., n, the total operation
count for the algorithm is %n3, the same as for the outer-product form of the
algorithm.

4. In fact the two algorithms not only have the same operation count, they
perform the same arithmetic operations. The best way to see this is to position
yourself at the (7,)-element of the array containing A and watch what happens
as the two algorithms proceed. You will find that for both algorithms the (i, j)-
element is altered as follows:

Q5 — PLiP1j;
Q5 — P1P1 — P2iP24,

Qij — P1iP1 — P2P25 — T Pi-1,iPi-1,j-

Then, depending on whether or not 72 = j, the square root of the element will
be taken to give p;;, or the element will be divided by p;; to give p;;.

One consequence of this observation is that the two algorithms are the
same with respect to rounding errors: they give the same answers to the very
last bit.

Gaussian elimination

5. We will now turn to the general nonsymmetric system of linear equations
Ar = b. Here A is to be factored into the product A = LU of a lower
triangular matrix and an upper triangular matrix. The approach used to derive
the Cholesky algorithm works equally well with nonsymmetric matrices; here,
however, we will take another line that suggests important generalizations.

6. To motivate the approach, consider the linear system

1171 + 1oT2 + 1323 + 1474 = by
171 + (o2T2 + (o3T3 + 244 = bo
3171 + Q32T + 3373 + 3474 = b3
Q4171 + QgoT2 + Q43T3 + QgqTy = by

If we set
mi1 = ail/alla 1= 273147

11 you try for a column-oriented algorithm, you will end up computing inner products; a
row-oriented algorithm requires axpy’s.

13. Linear Equations 99

and subtract m;; times the first equation from the ith equation (i = 2,3,4),
we end up with the system

01121 + a12T2 + 1373 + 1474 = by
Qo Ty + Ols T3 + ahy T = bl
Qo Ty + g3 + oy T4 = bl
Qoo + Ay3x3 + Ay xs = bl

where
! /
a;; = @ij —miroqj and by = b; — mipby.

Note that the variable ;1 has been eliminated from the last three equations.
Because the numbers m;; multiply the first equation in the elimination they
are called multipliers.
Now set
mi2 = (1;-2/0/22, i =3,4,

and subtract m;o times the second equation from the ith equation (i = 3,4).
The result is the system

01171 + 012T2 + 01373 + 1aTs = by
o Tg + abhsTs + ahywq = bl

03383 + O3y T4 = b

Qljsx3 + iy = bl

where

no__ o no__qt gt
aZ] == aZ] — mZQan and bZ = bZ mZQbQ.

Finally set
mis = ajz/ags, =4
and subtract m;3 times the third equation from the fourth equation. The result
is the upper triangular system

o121 + a12%2 + 1373 + a14z4 = by
! ! ! /

" " /!

0433.’1:3 + Oé34f1/'4 = b3

m /11

(13.1)

where

m__
. aij

O‘zj =

—mizay; and by = b — mi3bs.
Since the system (13.1) is upper triangular, it can be solved by the techniques

we have already discussed.

7. The algorithm we have just described for a system of order four extends in
an obvious way to systems of any order. The triangularization of the system is
usually called Gaussian elimination, and the solution of the resulting triangular

100 Afternotes on Numerical Analysis

system is called back substitution. Although there are slicker derivations, this
one has the advantage of showing the flexibility of the algorithm. For example,
if some of the elements to be eliminated are zero, we can skip their elimination
with a corresponding savings in operations. We will put this flexibility to use
later.

8. We have not yet connected Gaussian elimination with an LU decompo-
sition. One way is to partition the equation A = LU appropriately, derive
an algorithm, and observe that the algorithm is the same as the elimination
algorithm we just derived. However, there is another way.

9. Let A; = A and set

1 0 00
—m91 1 00
M =
. —ms31 010 ’
—may 0 01

where the m;;’s are the multipliers defined above. Then it follows that

AQEMlAl
1 0 0 0\ fann a2 a3 auis o1 o2 013 Q4
_|mma1 1 0 O |ax e e ax| _ | 0 oy oy oy
—m31 0 1 O0f |a3z a3z azsz au 0 of a3 ay
—mgy 0 0 1) \au1 a2 cuz au 0 ojp a3 oy
Next set
1 0 00
0 1 0 0
Mo —
2710 —m32 1 0
0 —mge 0 1
Then
AgEMQAQ
1 0 0 0 11 Q12 Q13 Q14 11 12 13 (14
|01 00 0 oy ahy aby| | 0 by by oy
0 —m3z2 1 0 0 ofy oz ajy 0 0 of oy
0 —mg 0 1 0 o)y oy aly 0 0 o o
Finally set
1 0 0 0
01 0 0
My=10 0 1 o
0 0 —TMN43 1

13. Linear Equations 101

Then
U= M3A3
10 0 0\ [fan o2 a3 o a1 Q2 13 04
_ |01 0 0 0 apy oby oy _| 0 gy O3 Oy
00 1 0 0 0 oYy oy 0 0 oY oy
0 0 —my3 1 0 0 o o 0 0 0 aof

In other words the product U = M3MyM; A is the upper triangular ma-
trix — the system of coefficients — produced by Gaussian elimination. If we set
L= M*M;'M;', then

A=1LU.

Moreover, since the inverse of a lower triangular matrix is lower triangular
and the product of lower triangular matrices is lower triangular, L itself is
lower triangular. Thus we have exhibited an LU factorization of A.

10. We have exhibited an LU factorization, but we have not yet computed it.
To do that we must supply the elements of L. And here is a surprise. The
(i, 7)-element of L is just the multiplier m;;.

To see this, first note that M, ! may be obtained from M, by flipping the
sign of the multipliers; e.g.,

1 0 00
4 |0 1 00
My~ = 0 ms 1 0
0 ™42 01

You can establish this by showing that the product is the identity.
It is now easy to verify that

1 0 00 10 0 O 1 0 0 0

“1a-1_ 10 1 00 01 0 0] [0 1 0 0

MZ M3 o 0 ms9 1 0 00 1 0 o 0 ms32 1 0

0 42 01 00 M43 1 0 my4g 143 1

and
L= MMy Mgt

1 000 1 0 0 0 1 0 0 0

| m21 1 0 0 0 1 0 0 | 21 1 0 0
o ms31 010 0 m39o 1 0 o ms31 Mm32 1 0 ’

myr 0 0 1/ \0O mgo my3 1 My Maz M43 1

which is what we wanted to show.

11. Once again, the argument does not depend on the order of the system.
Hence we have the following general result.

102 Afternotes on Numerical Analysis

If Gaussian elimination is performed on a matrix of order n to give
an upper triangular matrix U, then A = LU, where L is a lower
triangular matrix with ones on its diagonal. For ¢ > j the (i, j)-
element of L is the multiplier m;;.

Because the diagonal elements of L are one, it is said to be unit lower trian-
gular.

12. The following code overwrites A with its LU factorization. When it is
done, the elements of U occupy the upper half of the array containing A,
including the diagonal, and the elements of L occupy the lower half, excluding
the diagonal. (The diagonal elements of L are known to be one and do not
have to be stored.)

do 40 k=1,n
do 10 i=k+1,n
a(i,k) = a(i,k)/a(k,k)
10 continue
do 30 j=k+1,n
do 20 i=k+1,n
a(i,j) = a(i,j) - a(i,k)*a(k,j)
20 continue
30 continue
40 continue

13. An operation count for Gaussian elimination can be obtained in the usual
way by integrating the loops:

n n n 1
/// di dj dk = ~n?.
o Jr Jk 3

The count is twice that of the Cholesky algorithm, which is to be expected,
since we can no longer take advantage of symmetry.

Lecture 14

Linear Equations

Pivoting
BLAS
Upper Hessenberg and Tridiagonal Systems

Pivoting

1. The leading diagonal elements at each stage of Gaussian elimination play a
special role: they serve as divisors in the formulas for the multipliers. Because
of their pivotal role they are called — what else — pivots. If the pivots are all
nonzero, the algorithm goes to completion, and the matrix has an LU factor-
ization. However, if a pivot is zero the algorithm miscarries, and the matrix
may or may not have an LU factorization. The two cases are illustrated by the

matrix
01
1 0/’

which does not have an LU factorization and the matrix

006269

which does, but is singular. In both cases the algorithm fails.

2. In some sense the failure of the algorithm is a blessing—it tells you that
something has gone wrong. A greater danger is that the algorithm will go on
to completion after encountering a small pivot. The following example shows
what can happen.'?

0.001 2.000 3.000
A; = | —1.000 3.712 4.623 |,
~2.000 1.072 5.643

1.000 0.000 0.000
1000. 1.000 0.000 |,
2000. 0.000 1.000

M,

0.001 2.000 3.000
Az = [0.000 2004. 3005. [,
0.000 4001. 6006.

12This example is from G. W. Stewart, Introduction to Matriz Computations, Academic
Press, New York, 1973.

103

104 Afternotes on Numerical Analysis

1.000 0.000 0.000
My = 10.000 1.000 0.000 [,
0.000 —1.997 1.000

0.001 2.000 3.000
Az = 10.000 2004. 3005.
0.000 0.000 5.000

The (3, 3)-element of A3 was produced by cancelling three significant figures
in numbers that are about 6000, and it cannot have more than one figure of
accuracy. In fact the true value is 5.922. ...

3. As was noted earlier, by the time cancellation occurs in a computation, the
computation is already dead. In our example, death occurs in the passage from
A; to Ay, where large multiples of the first row were added to the second and
third, obliterating the significant figures in their elements. To put it another
way, we would have obtained the same decomposition if we had started with
the matrix

B 0.001 2.000 3.000
A; = | —1.000 4.000 5.000
—2.000 1.000 6.000

Clearly, there will be little relation between the solution of the system A1z = b
and A1 =b.

4. If we think in terms of linear systems, a cure for this problem presents itself
immediately. The original system has the form

0.001z; + 2.000z2 + 3.000z3 = b;
—1.000x1 + 3.71229 + 4.623x3 = by
—2.000x1 + 1.07229 + 5.643x3 = bs

If we interchange the first and third equations, we obtain an equivalent system

—2.000x1 + 1.072z9 + 5.643x3 = b3
0.001z1 + 2.000z2 + 3.000z3 = by
—1.000z1 + 3.712z9 + 4.623x3 = bo

whose matrix

X —2.000 1.072 5.643
A= 0.001 2.000 3.000
—1.000 3.712 4.623

can be reduced to triangular form without difficulty.

5. This suggests the following supplement to Gaussian elimination for com-
puting the LU decomposition.

14. Linear Equations 105

At the kth stage of the elimination, determine an index p; (k <
pr < n) for which |oy, x| is largest and interchange rows k and py
before proceeding with the elimination.

This strategy is called partial pivoting.'® It insures that the multipliers are not
greater than one in magnitude, since we divide by the largest element in the
pivot column. Thus a gross breakdown of the kind illustrated in §14.2 cannot
occur in the course of the elimination.

6. We have motivated the idea of partial pivoting by considering a system
of equations; however, it is useful to have a pure matrix formulation of the
process. The problem is to describe the interchange of rows in matrix terms.
The following easily verified result does the job.

Let P denote the matrix obtained by interchanging rows k£ and p
of the identity matrix. Then PA is the matrix obtained by inter-

changing rows k and p of A.

The matrix P is called a (k,p) elementary permutation.

7. To describe Gaussian elimination with partial pivoting in terms of matrices,
let Py denote a (k,py) elementary permutation, and, as usual, let M}, denote
the multiplier matrix. Then

U= Mu_Py_y- MyP,M, P A (14.1)

is upper triangular.

8. Once we have decomposed A in the form (14.1), we can use the decompo-
sition to overwrite a vector b with the solution of the linear system Az = b.
The algorithm goes as follows.

b= MyPb, k=1,2,....n—1
b

1.
2. U~ 1p

9. The notation in the above algorithm must be properly interpreted. When
we calculate P;b, we do not form the matrix P, and multiply b by it. Instead
we retrieve the index p; and interchange by with by, . Similarly, we do not
compute Mib by matrix multiplication; rather we compute

b; = b; — myby, i=k+1,...,n.

Finally, the notation U 'b does not mean that we invert U and multiply.
Instead we overwrite b with the solution of the triangular system Uy = b.

13There is a less frequently used strategy, called complete pivoting, in which both rows and
columns are interchanged to bring the largest element of the matrix into the pivot position.

106 Afternotes on Numerical Analysis

Notation like this is best suited for the classroom or other situations where
misconceptions are easy to correct. It is risky in print, since someone will
surely take it literally.

10. One drawback of the decomposition (14.1) is that it does not provide
a simple factorization of the original matrix A. However, by a very simple
modification of the Gaussian elimination algorithm, we can obtain an LU fac-
torization of P,_1--- PP A.

11. The method is best derived from a simple example. Consider A with its
third and fifth rows interchanged:

a1 a2 @13 Q14 as
a21 Q22 G23 Q24 0a25
a51 G52 53 Q54 0As5
Q41 Q42 @43 Q44 Q45
a3y az2 a3z azs 0ags

If one step of Gaussian elimination is performed on this matrix, we get

ail ai2 a3 G4 as

M2l Ay Gy3 Ay Aoy

Ms1 a5y G5z G54 A5 |

M4l Gy A3 Gy G

M3l a3y A3z A34 A3
where the numbers m;; and agj are the same as the numbers we would have
obtained by Gaussian elimination on the original matrix —after all, they are
computed by the same formulas:

mi1 = mg1/ma,
1o
aij = Q45 — M4;10a154-

If we perform a second step of Gaussian elimination, we get

a1 a2 a3 a4 as
Mol Ay Ay Ghy Ao
ms1 M5y asy ag, ags |,
My Myz G4y ajy Gy
M3 32 a3z a3y A3

where once again the m;; and the ag'j are from Gaussian elimination on the
original matrix. Now note that this matrix differs from the one we would
get from Gaussian elimination on the original matrix only in having its third
and fifth rows interchanged. Thus if at the third step of Gaussian elimination
we decide to use the fifth row as a pivot and exchange both the row of the

14. Linear Equations 107

submatrix and the multipliers, it would be as if we had performed Gaussian
elimination without pivoting on the original matrix with its third and fifth
rows interchanged.

12. This last observation is completely general.

If in the course of Gaussian elimination with partial pivoting both
the multipliers and the matrix elements are interchanged, the re-
sulting array contains the LU decomposition of

P,_i---PPA.

13. The following code implements this variant of Gaussian elimination.
do 60 k=1,n-1
maxa = abs(a(k,k))
pk) = k
do 10 i=k+1,n
if (abs(a(i,k)) .gt. maxa) then
maxa = abs(a(i,k))
pk) =1
end if
10 continue
do 20 j=1,n
temp = a(k,j)
a(k,j) = a(p(k),j) (14.2)
a(p(k),j) = temp
20 continue
do 30 i=k+1,n
a(i,k) = a(i,k)/a(k,k)
30 continue
do 50 j=k+1,n
do 40 i=k+1,n
a(i,j) = a(i,j) - a(i,k)*a(k,j)
40 continue
50 continue
60 continue
The loop ending at 10 finds the index of the pivot row. The loop ending at 20
swaps the pivot row with row k. Note that the loop goes from 1 to n, so that
the multipliers are also swapped. The rest of the code is just like Gaussian
elimination without pivoting.

14. To solve the linear system Ax = b, note that

LUx = Pn—l e PQPlA.’I,‘ == Pn—l e P2P1b.

108 Afternotes on Numerical Analysis

Thus we first perform the interchanges on the vector b and proceed as usual
to solve the two triangular systems involving L and U.

BLAS

15. Although we have recommended the BLAS for matrix computations, we
have continued to code at the scalar level. The reason is that Gaussian elim-
ination is a flexible algorithm that can be adapted to many special purposes.
But to adapt it you need to know the details at the lowest level.

16. Nonetheless, the algorithm (14.2) offers many opportunities to use the
BLAS. For example, the loop

maxa = abs(a(k,k))
pk) =k
do 10 i=k+1,n
if (abs(a(i,k)) .gt. maxa) then
maxa = abs(a(i,k))
p(k) =i
end if
10 continue

can be replaced with a call to a BLAS that finds the position of the largest
component of the vector

(a(k,k),a(k+1,k),...,a(n,k))T.

(In the canonical BLAS, the subprogram is called imax.) The loop

do 20 j=1,n
temp = a(k,j)
a(k,j) = a(p(k),j)
a(p(k),j) = temp
20 continue

can be replaced by a call to a BLAS (swap in the canon) that swaps the vectors
(a(k,k),a(k,k+1),...,a(k,n))
and
(a(p(k),k),a(pk),k+1),...,a(p(k),n)).
The loop

do 30 i=k+1,n
a(i,k) = a(i,k)/a(k,k)
30 continue

14. Linear Equations 109

can be replaced by a call to a BLAS (scal) that multiplies a vector by a scalar
to compute
a(k,k) " (ak,k+1),a(k,k+2),...,a(k,n))".

17. The two inner loops

do 50 j=k+1,n
do 40 i=k+1,n
a(i,j) = a(i,j) - a(i,k)*a(k,j)
40 continue
50 continue

in which most of the work is done, are the most interesting of all. The innermost
loop can, of course, be replaced by an axpy that computes the vector

a(k+1,j) a(k+1,k)
a(n,j) a(n,k).

However, the two loops together compute the difference

a(k+1,k+1) --- a(k+1l,n) a(k+1,k)
: : - : (a(k,k+1), ..., a(k,n)),
a(n,k+1) - a(n,n) a(n,k)

i.e., the sum of a matrix and an outer product. Since this operation occurs
frequently, it is natural to assign its computation to a BLAS, which is called
ger in the canon.

18. The subprogram ger is different from the BLAS we have considered so far
in that it combines vectors and matrices. Since it requires O(n?) it is called a
level-two BLAS.

The use of level-two BLAS can reduce the dependency of an algorithm on
array orientations. For example, if we replace the loops in §14.17 with an
invocation of ger, then the latter can be coded in column- or row-oriented
form as required. This feature of the level-two BLAS makes the translation
from FORTRAN, which is column oriented, to C, which is row oriented, much
easier. It also makes it easier to write code that takes full advantage of vector
supercomputers.!*

4 There is also a level-three BLAS package that performs operations between matrices. Used
with a technique called blocking, they can increase the efficiency of some matrix algorithms,
especially on vector supercomputers, but at the cost of twisting the algorithms they benefit
out of their natural shape.

110 Afternotes on Numerical Analysis

Upper Hessenberg and tridiagonal systems

19. As we have mentioned, Gaussian elimination can be adapted to matrices
of special structure. Specifically, if an element in the pivot column is zero,
we can save operations by skipping the elimination of that element. We will
illustrate the technique with an upper Hessenberg matrix.

20. A matrix A is upper Hessenberg if
1>7+1 = a;; =0.

Diagrammatically, A is upper Hessenberg if it has the form

X X X X X
X X X X X
A=|0 X X X X
0 0 X X X
0 00 X X

Here we are using a convention of Jim Wilkinson in which a 0 stands for a zero
element, while an X stands for an element that may or may not be zero (the
presumption is that it is not).

21. From this diagrammatic form it is clear that in the first step of Gaussian
elimination only the (2,1)-element needs to be eliminated —the rest are al-
ready zero. Thus we have only to subtract a multiple of the first row from the
second to get a matrix of the form

X X X X X
0 X X X X
0 X X X X
0 0 X X X
0 00 X X

At the second stage, we subtract a multiple of the second row from the third
to get a matrix of the form

X X X X X
0 X X X X
0 0 X X X
0 0 X X X
0 00 X X

Two more steps of the process yield the matrices

X X X X X X X X X X
0 X X X X 0 X X X X
00 X X X and 00 X X X|,
000X X 000X X
000X X 0000 X

14. Linear Equations 111

the last of which is upper triangular.

22. Here is code for the reduction of an upper Hessenberg matrix to triangular
form. For simplicity, we leave out the pivoting. The multipliers overwrite the
subdiagonal elements, and the final triangular form overwrites the matrix.

do 20 k=1,n-1
a(k+1,k) = a(k+1,k)/a(k,k)
do 10 j=k+1l,n
a(k+1,j) = a(k+1,j) - a(k+1l,k)*a(k,k+1)
10 continue
20 continue

23. An operation count for this algorithm can be obtained as usual by

integrating over the loops:
/ / djdk = —n”".
0 Jk 2

Thus, by taking advantage of the zero elements in an upper Hessenberg matrix
we have reduced its triangularization from an order n3 process to an order
n? process. In fact the triangularization is of the same order as the back
substitution.

24. Even greater simplifications are obtained when the matrix is tridiagonal,
i.e., of the form

O O O > M
O O > > M
O > M X O
< < M O O
< <K O O O

Here we not only reduce the number of rows to be eliminated, but (in the
absence of pivoting) when two rows are combined, only the diagonal element
of the second is altered, so that the computation reduces to statement

a(k+1,k+1) = a(k+1,k+1) - a(k+1,k)*a(k,k+1)

The result is an O(n) algorithm. Of course, we would not waste a square array
to store the 3n — 2 numbers that represent a tridiagonal matrix. Instead we
might store the diagonal elements in linear arrays. The details of this algorithm
are left as an exercise.

Lecture 15

Linear Equations

Vector Norms
Matrix Norms
Relative error
Sensitivity of Linear Systems

Vector norms

1. We are going to consider the sensitivity of linear systems to errors in their
coefficients. To do so, we need some way of measuring the size of the errors in
the coefficients and the size of the resulting perturbation in the solution. One
possibility is to report the errors individually, but for matrices this amounts
to n? numbers — too many to examine one by one. Instead we will summarize
the sizes of the errors in a single number called a norm. There are norms for
both matrices and vectors.

2. A wector norm is a function || - || : R™ — R that satisfies

1. z#0 = ||z|| >0,
2. o] = |e [|z]], (15.1)
3.z +yll < [l +[lyll-

The first condition says that the size of a nonzero vector is positive. The
second says that if a vector is multiplied by a scalar its size changes propor-
tionally. The third is a generalization of the fact that one side of a triangle
is not greater than the sum of the other two sides: see Figure 15.1. A useful
variant of the triangle inequality is

lz =yl = ll=ll = llyll-

3. The conditions satisfied by a vector norm are satisfied by the absolute value
function on the line— in fact, the absolute value is a norm on R'. This means
that many results in analysis can be transferred mutatis mutandis from the
real line to R".

4. Although there are infinitely many vector norms, the ones most commonly
found in practice are the one-, two-, and infinity-norms. They are defined as

follows:
Lo lzlly = 3 |=l,

2. |zl = s 73,
0. ||Z]|co = max; |z;]|.

113

114 Afternotes on Numerical Analysis

X+y

X

Figure 15.1. The triangle inequality.

In R3 the two-norm of a vector is its Euclidean length. Hence the two-
norm is also called the Fuclidean norm. The one norm is sometimes called the
Manhattan norm, because it is the distance you have to travel to get from A
to B in Manhattan (think about it). The infinity-norm is also called the max
norm. All three norms are easy to compute. They satisfy

[zl > [lzll2 > [J]lco-

Matrix norms

5. Matrix norms are defined in analogy with vector norms. Specifically, a
matrix norm is a function || - || : R™*™ — R that satisfies

1. A#£0 = |A| >0,
2. |laA| = |af |A],
3. [[A+ Bl < [|All + (B

6. The triangle inequality allows us to bound the norm of the sum of two
vectors in terms of the norms of the individual vectors. To get bounds on the

products of matrices, we need another property. Specifically, let || - || stand for
a family of norms defined for all matrices. Then we say that || - || is consistent
if

1AB| < [|A[llIBI,

whenever the product AB is defined. A vector norm || - ||y is consistent with a
matrix norm || - ||y if ||Az|ly < ||Alm||z]]v-

7. The requirement of consistency frustrates attempts to generalize the vector
infinity-norm in a natural way. For if we define ||A|| = max; |a;;|, then

GGG)

‘:2.

15. Linear Equations 115

GG

This is one reason why the matrix one- and infinity-norms have complicated
definitions. Here they are —along with the two-norm, which gets new name:

‘:1-1:1.

L. [|Ally = max; 3, |aijl,
F. |Allr = /2i; a3
0. [|Alloo = max; 3=; |ai;l-

The norm || - || is called the Frobenius norm.®

The one, Frobenius, and infinity norms are consistent. When A is a vector,
the one- and infinity-norms reduce to the vector one- and infinity-norms, and
the Frobenius norm reduces to the vector two-norm.

Because the one-norm is obtained by summing the absolute values of the
elements in each column and taking the maximum, it is sometimes called the
column-sum norm. Similarly, the infinity-norm is called the row-sum norm.

Relative error

8. Just as we use the absolute value function to define the relative error in
a scalar, we can use norms to define relative errors in vectors and matrices.
Specifically, the relative error in y as an approximation to x is the number

The relative error in a matrix is defined similarly.

9. For scalars there is a close relation between relative error and the number
of correct digits: if the relative error in y is p, then = and y agree to roughly
—log p decimal digits. This simple relation does not hold for the components
of a vector, as the following example shows.

Let
1.0000 1.0002
z = | 0.0100 and y = |0.0103
0.0001 0.0002

In the infinity-norm, the relative error in 5 as an approximation to z is 3-10~%.
But the relative errors in the individual components are 2-10™4, 3-1072, and 1.
The large component is accurate, but the smaller components are inaccurate
in proportion as they are small. This is generally true of the norms we have

15We will encounter the matrix two-norm later in §17.

116 Afternotes on Numerical Analysis

introduced: the relative error gives a good idea of the accuracy of the larger
components but says little about small components.

10. Tt sometimes happens that we are given the relative error of y as an
approximation to x and want the relative error of £ as an approximation to y.
The following result says that when the relative errors are small, the two are
essentially the same.

If
ly — =]

]

lz =yl _ o
Wl = T-»

<p<l, (15.2)

then

To see this, note that from (15.2), we have

pllell = lly = =l = llzll = [yl

or
(1 =)=l < llyll-

Hence
o=l _ -zl _
lyll A =pllzll = 1=p
If p=0.1, then p/(1 — p) = 0.111. .., which differs insignificantly from p.

Sensitivity of linear systems

11. Usually the matrix of a linear system will not be known exactly. For exam-
ple, the elements of the matrix may be measured. Or they may be computed
with rounding error. In either case, we end up solving not the true system

Az = b,
but a perturbed system

Az =b.
It is natural to ask how close x is to . This is a problem in matriz perturbation
theory. From now on, || - || will denote both a consistent matrix norm and a

vector norm that is consistent with the matrix norm.6

12. Let E = A — A so that y
A=A+ FE.

The first order of business is to determine conditions under which A is nonsin-
gular.

8We could also ask about the sensitivity of the solution to perturbations in b. This is a
very easy problem, which we leave as an exercise.

15. Linear Equations 117

Let A be nonsingular. If
|ATIE|| < 1, (15.3)

then A 4+ FE is nonsingular.

To establish this result, we will show that under the condition (15.3) if
z # 0 then (A+E)z # 0. Since A is nonsingular (A+E)z = AI+A 'E)r #0
if and only if (I + A71E)x # 0. But
I +A E)all = |+ A Ex| 2 ||z - A7 Ell|z]l = (1 — A7 E|})|l2]| > 0,
which establishes the result.

13. We are now in a position to establish the fundamental perturbation theo-
rem for linear systems.

Let A be nonsingular and let A = A + E. If
Az =b and Az =0,
where b is nonzero, then

I2 =2l 41, (15.4)
1zl

If in addition
AT E| <1,
then A is nonsingular and

Iz — =l _ A7 E]

< — (15.5)
[edl 1| ALE]

To establish (15.4), multiply the equation (A + E)Z = b by A~ to get
I+A'E)i=A""b=1x.

It follows that
z—i=A"'FEz,
or on taking norms
Iz — &|| < [|A El||Z]-

Since Z # 0 (because b # 0), this inequality is equivalent to (15.4).

If p = ||A71E|| < 1, the inequality (15.4) says that the relative error in z
as an approximation to Z is less than one. Hence by the result in §15.10, the
relative error in Z as an approximation to z is less than or equal to p/(1 — p),
which is just the inequality (15.5).

Lecture 16

Linear Equations

The Condition of a Linear System
Artificial I1l-Conditioning

Rounding Error and Gaussian Elimination
Comments on the Error Analysis

The condition of a linear system
1. As it stands, the inequality

|12 —=l| _ _IIAE]
- -1
] 1—[A=1E]|

is not easy to interpret. By weakening it we can make it more intelligible.
First note that

E
1A] < A1) = r(a) EL
1]
where
k(4) = A A7,
" 1)
K(A)—r < 1,
1]
then we can write
w12
& -] _ 14l
[i
— H -
14l

2. Now let’s disassemble this inequality. First note that if x(A)||E||/||A]| is at
all small, say less than 0.1, then the denominator on the right is near one and
has little effect. Thus we can consider the approximate inequality

1z — =l 1E]]
B4l 1Al
The fraction on the left,
| — =
[

is the relative error in Z as an approximation to z. The fraction on the right,

LE]

1All"

119

120 Afternotes on Numerical Analysis

is the relative error in A + F as an approximation to A. Thus the number
k(A) mediates the transfer of error from the matrix A to the solution z. As
usual we call such a number a condition number —in particular, x(A) is the
condition number of A with respect to inversion.'”

3. The condition number is always greater than one:
1< ||| < [JAATH] < [JANIATH] = w(A).

This means — unfortunately —that the condition number is a magnification
constant: the bound on the error is never diminished in passing from the
matrix to the solution.

4. To get a feel for what the condition number means, suppose that A is
rounded on a machine with rounding unit ey, so that a;; = a;;(1 + €;5), where
leij| < em. Then in any of the usual matrix norms,

IE]| < emlA]l.
If we solve the linear system A% = b without further error, we get a solution

that satisfies _
—— < k(A)en- (16.1)

In particular, if ey = 10~¢ and x(A) = 10*, the solution # can have relative
error as large as 10~“*%. Thus the larger components of the solution can be
inaccurate in their (¢ — k)th significant figures (the smaller components can be
much less accurate; see §15.9). This justifies the following rule of thumb. If
k(A) = 10* expect to lose at least k digits in solving the system Az =b.

Artificial ill-conditioning

5. Unfortunately, the rule of thumb just stated is subject to the qualification
that the matrix must in some sense be balanced. To see why consider the

matrix
1 1

(2 1
A _(_1 1).

The condition number of this matrix in the infinity-norm is nine.
Now multiply the first row of A by 107 to get the matrix

. 107% 10¢

17 Although it looks like you need a matrix inverse to compute the condition number, there
are reliable ways of estimating it from the LU decomposition.

whose inverse is

16. Linear Equations 121

i1 (2-100 -1
A _<—104 1)°

The condition number of A is about 6 - 10%.

If we now introduce errors into the fifth digits of the elements of A and A—
such errors as might be generated by rounding to four places— the infinity-
norms of the error matrices will be about ||A||s - 107* = || A]|oo - 10™%. Thus,
for A, the error in the solution of Az = b is approximately

1100
[A4loo

whose inverse is

K(A) =9.107%,

while for A the predicted error is

| E
[Alloo

Thus we predict a small error for A and a large one for A. Yet the passage from
A to A is equivalent to multiplying the first equation in the system Az = b by
10~*, an operation which should have no effect on the accuracy of the solution.

6. What’s going on here? Is A ill conditioned or is it not? The answer is “It
depends.”

7. There is a sense in which A is ill conditioned. It has a row of order 1074,
and a perturbation of order 10~* can completely change that row — even make
it zero. Thus the linear system Az = b is very sensitive to perturbations of
order 10~ in the first row, and that fact is reflected in the large condition
number.

8. On the other hand, the errors we get by rounding the first row of A are not
all of order 10™*. Instead the errors are bounded by

10~4 10~* 107*\ (1078 1078
1 2] \10* 2-10%)"

The solution of Az = b is insensitive to errors of this form, and hence the
condition number is misleading.

9. To put it another way, the condition number of A has to be large to accom-
modate errors that can never occur in our particular application, a situation
that is called artificial ill-conditioning. Unfortunately, there is no mechanical
way to distinguish real from artificial ill-conditioning. When you get a large
condition number, you have to go back to the original problem and take a hard
look to see if it is truly sensitive to perturbations or is just badly scaled.

122 Afternotes on Numerical Analysis

Rounding error and Gaussian elimination

10. One of the early triumphs of rounding-error analysis was the backward
analysis of Gaussian elimination. Although the complete analysis is tedious,
we can get a good idea of the techniques and results by looking at examples.
We will start with a 2 x 2 matrix.

11. Let
A= 3.000 2.000
~ \1.000 2.000)°

If we perform Gaussian elimination on this matrix in four-digit arithmetic, the
first (and only) multiplier is

mo1 = fl(ag; /ay1) = f1(1.000/3.000) = 0.3333.

Note that if we define
as = 0.9999,

then
mo1 = &21/(111 = 09999/3000 = 0.3333.

In other words, the multiplier we compute with rounding error is the same
multiplier we would get by doing exact computations on A with its (2,1)-
element slightly altered.

Let us continue the elimination. The reduced (2, 2)-element is

ayy = fl(asy —moraie) = f1(2.000 —0.3333 x 2.000) = 1(2.000—0.6666) = 1.333.
If we replace ago by

G99 = 1.9996,
then

aby = G2 — Mor1a12 = 1.9996 — 0.3333 x 2.000 = 1.9996 — 0.6666 = 1.333.

Once again, the computed value is the result of exact computing
with slightly perturbed input.
To summarize, if we replace A by the nearby matrix

A=

~ 3.0000 2.0000
0.9999 1.9996

and perform Gaussian elimination on A without rounding, we get the same
results as we did by performing Gaussian elimination with rounding on A.

12. The above example seems contrived. What is true of a 2 x 2 matrix may
be false for a large matrix. And if the matrix is nearly singular, things might
be even worse.

16. Linear Equations 123

However, consider the 100 x 100 matrix

A=1T-0.0lee",
where e = (1,1,...,1). This matrix has the form
099 -0.01 --- —0.01
-0.01 099 --- —0.01
-0.01 -0.01 --- 0.99

It is singular, which is about as ill conditioned as you can get.'®* On a machine
with rounding unit 2.2 - 107'6, I computed the LU decomposition of A and
multiplied the factors to get a matrix A = fi(LU). In spite of the very large
amount of computation involved, I found that

|A— Alloo = 7.4-10716,

which is less than four times the rounding unit.

13. Let us now turn from examples to analysis. The tedious part of the
rounding-error analysis of Gaussian elimination is keeping track of the errors
made at each stage of the elimination. However, you can catch the flavor of
the analysis by looking at the first stage.
First we compute the multipliers:
;1 (1 + 61'1)

mi = (a1 /an1) = oy

where as usual |¢;1| < ey. It follows that if we set
a1l = aﬂ(l + 61’1); (16.2)

then
mi1 = Gj1/a11. (16.3)

The next step is to reduce the submatrix:

af; = fl(ai; — maang) = [aij — miai; (1 + €;)](1 + mi5)
= lag; — maray; + aigni; — marays (€ + Mij + €57i5)]-
It follows that if we set

@ij = aij + aijNij — mia;(€ij + Nij + €iMij), (16.4)
¥However, this does not keep Gaussian elimination from going to completion, since only
the element wu100,100 is zero.

124 Afternotes on Numerical Analysis

then
a;j = Q;; — M;101 - (16.5)

Now it follows from (16.3) and (16.5) that the matrix

ail a2 - Qip
! !
m21 Gy - Gy,
7
! !
Mp1 Qpg " Gpp

which results from performing Gaussian elimination with rounding error on
A, is the same as what we would get from performing Gaussian elimination
without rounding error on

ail1 a2 o Gly
~ Gz1 G2 -+ G2q
A=

&nl &n2 e &nn

Moreover, A and A are near each other. From (16.4) it follows that for j > 1
|aij — aij| < (laij| + 3[ma|arj])em-

If we assume that the elimination is carried out with pivoting so that |m;;| <1
and set @ = max; j |a;;|, then the bound becomes

lai; — aij| < 4aewm.
Similarly, (16.2) implies that this bound is also satisfied for j = 1.

14. All this gives the flavor of the backward rounding-error analysis of Gaussian
elimination; however, there is much more to do to analyze the solution of a
linear system. We will skip the details and go straight to the result.

If Gaussian elimination with partial pivoting is used to solve the
n X n system Ar = b on a computer with rounding unit ey, the
computed solution Z satisfies

(A+ E)z = b,
where 12|
o < e(n)yeu. (16.6)
1Al

Here ¢ is a slowly growing function of n that depends on the norm,
and -y is the ratio of the largest element encountered in the course
of the elimination to the largest element of A.

16. Linear Equations 125

Comments on the error analysis

15. The backward error analysis shows that the computed solution is the exact
solution of a slightly perturbed matrix; that is, Gaussian elimination is a stable
algorithm. As we have observed in §6.22 and §7.7, a backward error analysis
is a powerful tool for understanding what went wrong in a computation. In
particular, if the bound (16.6) is small, then the algorithm cannot be blamed for
inaccuracies in the solution. Instead the responsible parties are the condition
of the problem and (usually) errors in the initial data.

2. However,

16. The function ¢ in the bound is a small power of n, say n
any mathematically rigorous ¢ is invariably an overestimate, and the error is

usually of order n or less, depending on the application.

17. The number 7y in the bound is called the growth factor because it measures
the growth of elements during the elimination. If it is large, we can expect a
large backward error. For example, the growth factor in the example of §14.2,
where Gaussian elimination failed, was large compared to the rounding unit.
In this light, partial pivoting can be seen as a way of limiting the growth by
keeping the multipliers less than one.

18. Unfortunately, even with partial pivoting the growth factor can be on the
order of 2". Consider, for example, the matrix

1 0 0 01

-1 1 0 01
W=1[|-1 -1 1 01
-1 -1 -1 11

-1 -1 -1 -1 1

Gaussian elimination with partial pivoting applied to this matrix yields the
following sequence of matrices.

1 0 0 01 10 0 01 100 01
0 1 0 0 2 01 0 0 2 010 02
0 -1 1 0 2 00 1 0 4 001 014
0 -1 -1 1 2 00 -1 1 4 000 128
0O -1 -1 -1 2 00 -1 -1 4 000 -1 8

1000 1

0100 2

0010 4

0001 8

000 0 16

Clearly, if Gaussian elimination is performed on a matrix of order n having
this form, the growth factor will be 27 1.

126 Afternotes on Numerical Analysis

19. Does this mean that Gaussian elimination with partial pivoting is not to
be trusted? The received opinion has been that examples like the one above
occur only in numerical analysis texts: in real life there is little growth and
often a decrease in the size of the elements. Recently, however, a naturally
occurring example of exponential growth has been encountered —not surpris-
ingly in a matrix that bears a family resemblance to W. Nonetheless, the
received opinion stands. Gaussian elimination with partial pivoting is one of
the most stable and efficient algorithms ever devised. Just be a little careful.

Lecture 17

Linear Equations

Introduction to a Project

More on Norms

The Wonderful Residual

Matrices with Known Condition Numbers
Invert and Multiply

Cramer’s Rule

Submission

Introduction to a project

1. In this project we will use MATLAB to investigate the stability of three
algorithms for solving linear systems. The algorithms are Gaussian elimination,
invert-and-multiply, and Cramer’s rule.

More on norms

2. We have mentioned the matrix two-norm in passing. Because the two-
norm is expensive to compute, it is used chiefly in mathematical investigations.
However, it is ideal for our experiments; and since MATLAB has a function norm
that computes the two-norm, we will use it in this project. From now on | - ||
will denote the vector and matrix two-noris.

3. The matrix two-norm is defined by!®

|4l = max [Az].
lell=1

Here is what you need to know about the two-norm for this project.

The matrix two-norm of a vector is its vector two-norm.

2. The matrix two-norm is consistent; that is, ||AB|| < ||A||||B||, when-
ever AB is defined.

3. |lzy ™| = ll/llyll-

. ||diag(dy, ..., d,)| = max;{|d;|}.

5. fUTU =T and V'V = I (we say U and V are orthogonal), then

|UT AV = || All.
191f you find this definition confusing, think of it this way. Given a vector z of length one,

the matrix A stretches or shrinks it into a vector of length [|Az||. The matrix two-norm of A
is the largest amount it can stretch or shrink a vector.

127

128 Afternotes on Numerical Analysis

All these properties are easy to prove from the definition of the two-norm, and
you might want to try your hand at it. For the last property, you begin by
establishing it for the vector two-norm.

With these preliminaries out of the way, we are ready to get down to
business.

The wonderful residual

4. How can you tell if an algorithm for solving the linear system Ax = b is
stable —that is, if the computed solution Z satisfies a slightly perturbed system

(A+ E)z = b, (17.1)
where ||E||

— = O(em)?

4] -

One way is to have a backward rounding-error analysis, as we do for Gaussian
elimination. But lacking that, how can we look at a computed solution and
determine if it was computed stably?

5. One number we cannot trust is the relative error

We have seen that even with a stable algorithm the relative error depends on
the condition of the problem.

6. If Z satisfies (17.1), we can obtain a lower bound on | E|| by computing
the residual
r=b— Az.

Specifically, since 0 = b— (A+ E)Z = r+ EZ, we have ||r|| < ||Ez| < ||E||||Z||-

It follows that
1Z]]

LA~ ANz

Thus if the relative residual ,

1Al]]
has a large norm, we know that the solution was not computed stably.
On the other hand, if the relative residual is small, the result was computed
stably. To see this, we must show that there is a small matrix £ such that
(A+ E)z =b. Let

rz’

RER

17. Linear Equations 129

Then
=T~ =112
. . . rT T ||z
b—(A+E)=(b—-—A%)—Ei=1r— —5 =7 — w5 =0,
1212 1212
so that (A + E)z = b. But
1Bl _ _lirzT]
1AL 1212 11Al
and it is easy to see that ||rZT|| = ||r||||Z||. Hence,
el _ 7l
1A LAz]

7. What we have shown is that the relative residual norm

[l

[A[lf|Z]

is a reliable indication of stability. A stable algorithm will yield a relative
residual norm that is of the order of the rounding unit; an unstable algorithm
will yield a larger value.

Matrices with known condition numbers

8. To investigate the effects of conditioning, we need to be able to gener-
ate nontrivial matrices of known condition number. Given an order n and a
condition number s we will take A in the form

A=UDVT,

where U and V are random orthogonal matrices (i.e., random matrices satis-
fying UTU = V'V =1I), and

D= diag(l,ffn_il,kf%, oK),

The fact that the condition number of A is k follows directly from the properties
of the two-norm enumerated in §17.3.

9. The first part of the project is to write a function
function a = condmat(n, kappa)

to generate a matrix of order n with condition number x. To obtain a ran-
dom orthogonal matrix, use the MATLAB function rand to generate a random,
normally distributed matrix. Then use the function qr to factor the random
matrix into the product QR of an orthogonal matrix and an upper triangular
matrix, and take @ for the random orthogonal matrix.

You can check the condition of the matrix you generate by using the func-
tion cond.

130 Afternotes on Numerical Analysis

Invert and multiply

10. The purpose here is to compare the stability of Gaussian elimination
with the invert-and-multiply algorithm for solving Az = b. Write a function

function invmult(n, kap)

where n is the order of the matrix A and kap is a vector of condition numbers.
For each component kap(i), the function should do the following.

1. Generate a random n X n matrix A of condition kap(i).

2. Generate a (normally distributed) random n-vector z.

3. Calculate b = Az.

4. Calculate the solution of the system Ax = b by Gaussian elimination.

5. Calculate the solution of the system Az = b by inverting A and
multiplying b by the inverse.

6. Print

[i, kap(i); reg, rrg; rei, rri]

where

reg is the relative error in the solution by Gaussian elimination,
rrg is the relative residual norm for Gaussian elimination,

rei is the relative error in the invert-and-multiply solution,

rri is the relative residual norm for invert-and-multiply.

11. The MATLAB left divide operator “\” is implemented by Gaussian elimi-
nation. To invert a matrix, use the function inv.

Cramer’s rule

12. The purpose here is to compare the stability of Gaussian elimination with
Cramer’s rule for solving the 2 x 2 system Az = b. For such a system, Cramer’s
rule can be written in the form

z1 = (brage — baai2)/d,
z9 = (baa11 — biag1)/d,

where
d = ay1a22 — agia;2.

13. Write a function
function cramer (kap)

where kap is a vector of condition numbers. For each component kap (i), the
function should do the following.

17. Linear Equations 131

S Ot w e

Generate a random 2 X 2 matrix A of condition kap(i).

Generate a (normally distributed) random 2-vector z.

Calculate b = Ax.

Calculate the solution of the system Az = b by Gaussian elimination.
Calculate the solution of the system Az = b by Cramer’s rule.

Print

[i, kap(i); reg, rrg; rec, rrc]

where
reg is the relative error in the solution by Gaussian elimination,
rrg is the relative residual norm for Gaussian elimination,
rec is the relative error in the solution by Cramer’s rule,
rrc is the relative residual norm for Cramer’s rule.
Submission

14. Run your programs for

kap = (1,10%,10%,10'2,10'°)

using the MATLAB command diary to accumulate your results in a file. Edit
the diary file and at the top put a brief statement in your own words of what
the results mean.

e Polynomial Interpolation

133

Lecture 18

Polynomial Interpolation

Quadratic Interpolation

Shifting

Polynomial Interpolation

Lagrange Polynomials and Existence
Uniqueness

Quadratic interpolation

1. Muller’s method for finding a root of the equation f(¢t) = 0 is a three-
point iteration (see §4.19). Given starting values zg, 1, zo and corresponding
function values fy, f1, fo, one determines a quadratic polynomial

p(t) = ap + art + ast?

satisfying
p(z;) = fi, 1=0,1,2>. (18.1)

The next iterate 3 is then taken to be the root nearest xzo of the equation
p(t) = 0.

2. At the time the method was presented, I suggested that it would be instruc-
tive to work through the details of its implementation. One of the details is the
determination of the quadratic polynomial p satisfying (18.1), an example of
quadratic interpolation. Since quadratic interpolation exhibits many features
of the general interpolation problem in readily digestible form, we will treat it
first.

3. If the equations (18.1) are written out in terms of the coefficients ag, a1,
ag, the result is the linear system

9

1 zo zg\ [ao fo
2 _

1 1 z{| |la1 | = | /1
2

1 z9 z5) \a2 fo

In principle, we could find the coefficients of the interpolating polynomial by
solving this system using Gaussian elimination. There are three objections to
this procedure.

4. First, it is not at all clear that the matrix of the system —it is called
a Vandermonde matriz —is nonsingular. In the quadratic case it is possible
to see that it is nonsingular by performing one step of Gaussian elimination
and verifying that the determinant of the resulting 2 x 2 system is nonzero.
However, this approach breaks down in the general case.

135

136 Afternotes on Numerical Analysis

5. A second objection is that the procedure is too expensive. This objection
is not strictly applicable to the quadratic case; but in general the procedure
represents an O(n?) solution to a problem which, as we will see, can be solved
in O(n?) operations.

6. Another objection is that the approach can lead to ill-conditioned systems.
For example, if o = 100, 1 = 101, 2 = 102, then the matrix of the system is

1 100 10,000
V=1 101 10,201
1 102 10,404

The condition number of this system is approximately 2-108.

Now the unequal scale of the columns of V' suggests that there is some
artificial ill-conditioning in the problem (see §16.5) —and indeed there is. But
if we rescale the system, so that its matrix assumes the form

1 1.00 1.0000
V=1 101 1.0201 |,
1 1.02 1.0404

the condition number changes to about 10° — still uncomfortably large, though
perhaps good enough for practical purposes. This ill-conditioning, by the way,
is real and will not go away with further scaling.

Shifting
7. By rewriting the polynomial in the form
p(t) = bo + b1 (t — z2) + ba(t — 72)?,

we can simplify the equations and remove the ill-conditioning. Specifically, the
equations for the coefficients b; become

1 zo—x2 (z0—z2)%\ [bo fo
1 z1—29 (m1—12)?| |01 =| N
1 0 0 ba fo

From the third equation we have
bO = f27
from which it follows that
Ty — w2 (0 —22)%\ (b1 _(fo—f2
1 — 1z (71— 22)%) \bo fi—f2) "
For our numerical example, this equation is
=2 4\ (b1 _ (fo— Lo
-1 1) \bo fi—f2)’

which is very well conditioned.

18. Polynomial Interpolation 137

Polynomial interpolation

8. The quadratic interpolation problem has a number of features in common
with the general problem.

1. It is of low order. High-order polynomial interpolation is rare.

2. It was introduced to derive another numerical algorithm. Not all
polynomial interpolation problems originate in this way, but many
numerical algorithms require a polynomial interpolant.

3. The appearance of the problem and the nature of its solution change
with a change of basis.2® When we posed the problem in the natural
basis 1, ¢, t2, we got an ill-conditioned 3 x 3 system. On the other
hand, posing the problem in the shifted basis 1, t — zo, (t — z2)? lead
to a well-conditioned 2 x 2 system.

9. The general polynomial interpolation problem is the following.

Given points (zo, fo), (1, f1), ---, (Tn, fn), where the z; are dis-
tinct, determine a polynomial p satisfying

1. deg(p) <,
2. p(z) = fi, i=0,1,...,n.

10. If we write p in the natural basis to get
p(t) = ap + art + agt® + - + ant”,

the result is the linear system

1 zo 3 - 2B\ [ao fo
1 1 m% e g a1 fi

=1 (18.2)
1 z, x% I an fn

The matrix of this system is called a Vandermonde matriz. The direct solution
of Vandermonde systems by Gaussian elimination is not recommended.

Lagrange polynomials and existence

11. The existence of the interpolating polynomial p can be established in the
following way. Suppose we are given n + 1 polynomials £;(t) that satisfy the

following conditions:
0 ifi#y,
by ={] i (183)

20The term “basis” is used here in its usual sense. The space of, say, quadratic polynomials
is a vector space. The functions 1, ¢, t? form a basis for that space. So do the functions 1,
t—a, (t —a)’

138 Afternotes on Numerical Analysis

Then the interpolating polynomial has the form

p(t) = folo(t) + frla(t) + - + fuln(2). (18.4)

To establish this result, note that when the right-hand side of (18.4) is evalu-
ated at z;, all the terms except the ith vanish, since £;(x;) vanishes for j # i.
This leaves f;4;(z;), which is equal to f;, since £;(z;) = 1. In equations,

p@) = 3 (@) = fits(ws) = fi
j=0

12. We must now show that polynomials £; having the properties (18.3) actu-
ally exist. For n = 2, they are

to(t) = zmitm) gy (1) = Lmoltee)

$0—$1)(.’E0—.’E2) ? - (:1,‘1—:1,‘0)(1:1—1:2) ?

() = (t—=0)(t—=1)

 (m2—zo)(m2—w1)”
It is easy to verify that these polynomials have the desired properties.

13. Generalizing from the quadratic case, we see that the following polynomials
do the job:

2;(t) = z:Inl b2 j=0 n
j P -
i—0 117]' — 371" ' ’
i#]

These polynomials are called Lagrange polynomials.

14. One consequence of the existence theorem is that equation (18.2) has a
solution for any right-hand side. In other words, the Vandermonde matriz for
n + 1 distinct points g, ..., T is nonsingular.

Uniqueness

15. To establish the uniqueness of the interpolating polynomial, we use the
following result from the theory of equations.

If a polynomial of degree n vanishes at n + 1 distinct points, then
the polynomial is identically zero.

16. Now suppose that in addition to the polynomial p the interpolation prob-
lem has another solution q. Then r(t) = p(t) — q(t) is of degree not greater
than n. But since r(z;) = p(z;) —q(z;) = fi— fi = 0, the polynomial r vanishes
at n + 1 points. Hence r vanishes identically, or equivalently p = ¢.

17. The condition that deg(p) < n in the statement of the interpolation
problem appears unnatural to some people. “Why not require the polynomial

18. Polynomial Interpolation 139

to be exactly of degree n?” they ask. The uniqueness of the interpolant provides
an answer.

Suppose, for example, we try to interpolate three points lying on a straight
line by a quadratic. Now the line itself is a linear polynomial that interpolates
the points. By the uniqueness theorem, the result of the quadratic interpolation
must be that same straight line. What happens, of course, is that the coefficient
of t? comes out zero.

Lecture 19

Polynomial Interpolation

Synthetic Division

The Newton Form of the Interpolant
Evaluation

Existence and Uniqueness

Divided Differences

Synthetic division
1. The interpolation problem does not end with the determination of the inter-
polating polynomial. In many applications one must evaluate the polynomial
at a point t. As we have seen, it requires no work at all to determine the
Lagrange form of the interpolant: its coefficients are the values f; themselves.
On the other hand, the individual Lagrange polynomials are tricky to evaluate.
For example, products of the form

(@0 —m) -+ (Tie1 — i) (Tigr — @) -+ (0 — T4)
can easily overflow or underflow.

2. Although the coefficients of the natural form of the interpolant
p(t) = ant” + an_1t" "+ an_1t" " 4 - + a1t + ag (19.1)

are not easy to determine, the polynomial can be efficiently and stably evalu-
ated by an algorithm called synthetic division or nested evaluation.

3. To derive the algorithm, write (19.1) in the nested form
p(t) = ((--- (((ap)t + an—1)t + an—2) - -)t + a1)t + ap. (19.2)

(It is easy to convince yourself that (19.1) and (19.2) are the same polynomial
by looking at, say, the case n = 3. More formally, you can prove the equality
by an easy induction.) This form naturally suggests the successive evaluation

Qnp,
(an)t +an-1,
((an)t + anfl)t +an-—2,

((--- ((an)t + an-1)t + an—2))t + au,
((o ((an)t + a'n—l)t + an—?) e ')t + al)t + ag.

At each step in this evaluation the previously calculated value is multiplied by
t and added to a coefficient. This leads to the following simple algorithm.

141

142 Afternotes on Numerical Analysis

p = alnl;
for (i=n-1; i>=0; i--)
p = pxt + alil;

4. Synthetic division is quite efficient, requiring only n additions and n mul-
tiplications. It is also quite stable. ~An elementary rounding-error analysis
will show that the computed value of p(t) is the exact value of a polynomial p
whose coefficients differ from those of p by relative errors on the order of the
rounding unit.

The Newton form of the interpolant

5. The natural form of the interpolant is difficult to determine but easy to
evaluate. The Lagrange form, on the other hand, is easy to determine but
difficult to evaluate. It is natural to ask, “Is there a compromise?” The
answer is, “Yes, it is the Newton form of the interpolant.”

6. The Newton form results from choosing the basis

1, t =, (t —zo)(t —21), ..., (E —@0)(t —21) - (t — Tn—1), (19.3)
or equivalently from writing the interpolating polynomial in the form

p(t) =co+c1(t —zo) + co(t — zo)(t —z1) + - -+

+ep(t—zo)(t —z1) - (t— T _1)- (19.4)

To turn this form of the interpolant into an efficient computational tool, we
must show two things: how to determine the coefficients and how to evaluate
the resulting polynomial. The algorithm for evaluating p(¢) is a variant of syn-
thetic division, and it will be convenient to derive it while the latter algorithm
is fresh in our minds.

Evaluation
7. To derive the algorithm, first write (19.4) in nested form:

p(t) = ((+ (({en)(t — zn-1)
+en 1)t —Tp2)+en))t —m31) + 1)t —zg) + co-

From this we see that the nested Newton form has the same structure as the
nested natural form. The only difference is that at each nesting the multiplier
t is replaced by (¢t — z;). Hence we get the following algorithm.

p = clnl;
for (i=n-1; i>=0; i--)
p = px(t-x[i]) + c[il;

8. This algorithm requires 2n additions and n multiplications. It is backward
stable.

19. Polynomial Interpolation 143

Existence and uniqueness

9. The existence of the Newton form of the interpolant is not a foregone
conclusion. Just because one has written down a set of n 4+ 1 polynomials, it
does not follow that all polynomials of degree n can be expressed in terms of
them. For this reason we will now establish the existence of the Newton form,
before going on to show how to compute it.2!

10. We begin by evaluating p(z;), where p is in the Newton form (19.4). Now

p(zo) = co + c1(zg — mo) + c2(xo — o) (T — 1) + -+
+ cp(zo — 20)(z0 — 21) -+ - (T — Tp—1)
= Cp,

the last n terms vanishing because they contain the zero factor (zy — zg)-
Similarly,

p(x1) =co + c1(x1 — xo) + co(x1 — x0) (21 — 1) + - -
+ Cn(.’El — .’130)(,731 — 561) s (.’I)l — -'I»'n—l)
= cp + c1(z1 — Zo).

In general, p(x;) will contain only i+ 1 nonzero terms, since the last n —¢ terms
contain the factor (z; — z;).

It now follows from the interpolation conditions f; = p(z;) that we must
determine the coefficients ¢; to satisfy

fO = Co,

fi=co+ci(z1 — z0), (19.5)

fa=co+eci(zy —x0) + -+ cplzn — z0)(@n — 1) -+ (T — Zp—1)-

This is a lower triangular system whose diagonal elements are nonzero. Hence
the system is nonsingular, and there are unique coefficients ¢; that satisfy the
interpolation conditions.

11. The matrix of the system (19.5), namely

1 0 0 e 0
1 (371 - J,‘()) 0 0
1 (IEQ - iL‘()) (1132 - LE())(LL‘Q - £E1) s 0
i (zn - zo) (T — wo)'(:vn —x1) - (zn —z0)(TYy — :1:1) (T — Tp—1)

21 The existence also follows from the fact that any sequence {p;}?, of polynomials such
that p; is ezactly of degree 7 forms a basis for the set of polynomials of degree n (see §23.6).
The approach taken here, though less general, has pedagogical advantages.

144 Afternotes on Numerical Analysis

is analogous to the Vandermonde matrix in the sense that its (i, j)-element is
the (j — 1)th basis element evaluated at ;1. The corresponding analogue for
the Lagrange basis is the identity matrix. The increasingly simple structure of
these matrices is reflected in the increasing ease with which we can form the
interpolating polynomials in their respective bases.

12. An interesting consequence of the triangularity of the system (19.5) is
that the addition of new points to the interpolation problem does not affect
the coefficients we have already computed. In other words,

co is the 0-degree polynomial interpolating
(‘T()a fO))
co+cr(t — 1) is the 1-degree polynomial interpolating

($07 f0)7 ('1'1’ fl)a
co +c1(t — xg) + co(t — zp)(t — z1) is the 2-degree polynomial interpolating

(anfO)a (-Z'lafl)a (xlafl)a

and so on.

Divided differences

13. In principle, the triangular system (19.5) can be solved in O(n?) operations
to give the coefficients of the Newton interpolant. Unfortunately, the coeffi-
cients of this system can easily overflow or underflow. However, by taking a
different view of the problem, we can derive a substantially different algorithm
that will determine the coefficients in O(n?) operations.

14. We begin by defining the divided difference f|zg,z1,...,2zx| to be the
coefficient of z* in the polynomial interpolating (zo, fo), (€1, f1), - --, (Zk, fr)-
From the observations in §19.12, it follows that

f[a}(),ilil,. .. ,$k] = Ck;

ie., f[zo,z1,...,2] is the coefficient of (¢ — z¢)(t — z1)--- (¢ — zx—1) in the
Newton form of the interpolant.

15. From the first equation in the system (19.5), we find that

flzo] = fo,
and from the second

f1—ao _ flz1] = flzo]

.’121—.’13()_ r1 — I

f[xo,]71] =

Thus the first divided difference is obtained from zeroth-order divided differ-
ences by subtracting and dividing, which is why it is called a divided difference.

19. Polynomial Interpolation 145

16. The above expression for f[zg,z1] is a special case of a more general
relation:

floo 31, a5] = flz1, 2, .., zK] — f[mo,xl,...,mk_l]' (19.6)
Tk — o

To establish it, let

p be the polynomial interpolating (zo, fo), (1, f1),---, (zk, fx),
g be the polynomial interpolating (xg, fo), (x1, f1)s-- -5 (Tk—1, fk—1),
r be the polynomial interpolating (z1, f1), (z2, f2),- - -, (Zk, f)-

(19.7)
Then p, ¢, and r have leading coefficients f[zo, z1,-..,zk], f[zo,Z1,---,Tk-1],
and f[z1,x2,...,Tk|, respectively.
Now we claim that
t—x
p(t) = q(t) + 2 [r(t) - q(t)]. (19.8)
Tk — X

To see this, we will show that the right-hand side evaluates to f; = p(x;) when
t=xz; (i=0,...,k). The claim then follows by the uniqueness of interpolating
polynomials.

For t = xg,
Zo — To

[r(z0) — q(z0)] = fo,

since ¢ interpolates (zg, fo). Fort =z; (i =1,...,k — 1),

q(zo) + e

Ti —Zo ey T T X
T — To [r(z:) —q(z:)] = fi + To — Tk

q(z;) + (fi — fi) = fi.

Finally, for ¢t = zy,

T — 0

q(zk) + [r(z0) = g(zo)] = q(zx) + [r(zx) — q(zx)] = r(zk) = f-

Tk — Zo

From (19.8) and (19.7) it follows that the coefficient of z* in p is

fxlxz...xk—fmoxl...xk,l
f[iI,‘(),IEl,...,.’L'k]: [7 ? 9] [7 ? 7]’
Tk — Zo
which is what we wanted to show.
17. A consequence of (19.6) is that we can compute difference quotients

recursively beginning with the original f;. Specifically, let d;; denote the (i, j)-
entry in the following table (the indexing begins with doo = f[zo]):

fO = f%xo} []
fi=flr1] flzo,z1
fo= flza] flz1, 9] ;[mﬂ,xl, 9] (19.9)

fs= flzs] flzo,z3] flzi,z2,23] flzo, 21,22, 23]

146 Afternotes on Numerical Analysis

Then it follows that
g = Gii=1 — i1,
] —)

from which the array can be built up columnwise. The diagonal elements are
the coefficients of the Newton interpolant.

18. It is not necessary to store the whole two-dimensional array (19.9). The
following code assumes that the f; have been stored in the array ¢ and over-
writes the array with the coefficients of the Newton interpolant. Note that
the columns of (19.9) are generated from the bottom up to avoid overwriting
elements prematurely.

for (j=2; j<=n; j++)
for (i=n; i>=j; i--)

cli] = (clil-c[i-11)/(x[i]l-x[i-j1)

The operation count for this algorithm is n? additions and %nQ divisions.

Lecture 20

Polynomial Interpolation

Error in Interpolation
Error Bounds
Convergence
Chebyshev Points

Error in interpolation

1. Up to this point we have treated the ordinates f; as arbitrary numbers. We
will now shift our point of view and assume that the f; satisfy

fi = f(=i),

where f is a function defined on some interval of interest. As usual we will
assume that f has as many derivatives as we need.

2. Let p be the polynomial interpolating f at zg, =1, ..., z,. Since poly-
nomial interpolation is often done in the hope of finding an easily evaluated
approximation to f, it is natural to look for expressions for the error

In what follows, we assume that ¢ is not equal to zg, z1, ..., z, (after all, the
error is zero at the points of interpolation).

3. To find an expression for the error, let g(u) be the polynomial of degree
n—+ 1 that interpolates f at the points =g, 1, ..., z,,, and t. The Newton form
of this interpolant is

qu) =co+ci(u—xz0) + - +ep(u—xz0) - (u— 2p_1)
+ flzoy - -y Tnytl(u —x0) - (U — Tp—1)(u — Tp).

Now (see §19.12) co + c1(u — xg) + -+ + cp(u — xg) - - (4 — x—1) is just the
polynomial p(u). Hence if we set

wu) = (u—xz¢) - (u—2xp_1)(u—z,),

we have
q(’U,) = p(u) + f[$0, <5 Tn, t]w(u)
But by construction ¢(t) = f(¢). Hence

f(@) =p(t) + flzo, - -, Tn, (),

147

148 Afternotes on Numerical Analysis

or
e(t) = f(t) —p(t) = flzo,- .., Tn, tjw(t), (20.1)
which is the expression we are looking for.

4. Although (20.1) reveals an elegant relation between divided differences and
the error in interpolation, it does not allow us to bound the magnitude of the
error. However, we can derive another, more useful, expression by considering
the function

90(”) = f(u) —p(’u) - f[‘TOa s ,.’L‘n,t](U(U)-
Here, as above, we regard u as variable and ¢ as fixed.
Since p(z;) = f(x;) and w(x;) = 0,

o(zi) = fzi) — p(xi) — flxo, - ., Tn, thw(z:) = 0.
Moreover, by (20.1),
o(t) = (1) —p(t) = flzo,- -, 2n, tlw(t) = 0.
In other words, if I is the smallest interval containing xg, ..., z, and ¢, then
©(u) has at least n + 2 zeros in I.
By Rolle’s theorem, between each of these zeros there is a zero of ¢'(u):
¢'(u) has at least n + 1 zeros in I.

Similarly,
¢"(u) has at least n zeros in I.

Continuing, we find that
(™) () has at least one zero in I.

Let & be one of the zeros of ¢(™t1) lying in I.
To get our error expression, we now evaluate ("1 at ¢. Since p(u) is a

polynomial of degree 7,
P = 0.

Since w(u) = w1 4 ---

Wt (€) = (n+ 1)!

Hence
0= (&) = () = flzo,..., n, 8] (n + 1)L,
or
7)
flzo,- - xn,t] = CESE (20.2)

In view of (20.1), we have the following result.

20. Polynomial Interpolation 149

Let p be the polynomial interpolating f at zg, 1, ..., T,- Then
Fr(E)
£ —p(t) = "——2(t —zg) - (t — 20.3
£ = plt) = Ty (o)), (203)
where ¢ lies in the smallest interval containing zg, z1, ..., , and
1.

5. The point & = £ is a function of ¢. The proof says nothing of the properties
of &;, other than to locate it in a certain interval. However, it is easy to show
that

f+1(&,) is continuous.

Just apply I’'Hopital’s rule to the expression

f(t) —p(t)

(n+1) =(n !
FrRE) = (+1)'(t—x0)...(t—$n)

at the points zg, ..., ;.

6. A useful and informative corollary of (20.2) is the following expression.

1
f[‘TO,‘/E?’ S ,-Tn] = ﬁf(n)(n)a
where 7 lies in the interval containing z1, x3, ..., Ty.
In particular, if the points zg, ..., z, cluster about a point ¢, the nth difference

quotient is an approximation to f(™ (t).

Error bounds

7. We will now show how to use (20.3) to derive error bounds in a simple case.
Let £(t) be the linear polynomial interpolating f(t) at z¢ and z1, and suppose
that

IO <M
in some interval of interest. Then
n M
1£0) — e = T8N~ a)t —) < it 20yt -).

The further treatment of this bound depends on whether ¢ lies outside or inside
the interval [zg, z1].

8. If ¢ lies outside [zg, 1], we say that we are eztrapolating the polynomial
approximation to f. Since |(t — zo)(t — z1)| quickly becomes large as ¢ moves

150 Afternotes on Numerical Analysis

away from [zg,z1], extrapolation is a risky business. To be sure, many nu-
merical algorithms are based on a little judicious extrapolation. But when
the newspapers carry a story asserting that the population of the U.S. will
become zero in 2046 and two weeks later a learned worthy announces that the
world population will become infinite in 2045, you can bet that someone has
been practicing unsafe extrapolation. Economists and astrologers are mighty
extrapolators.

9. If ¢ lies inside [zg,z1], we say that we are interpolating the polynomial
approximation to f. (Note the new sense of the term “interpolation.”) In this
case we can get a uniform error bound. Specifically, the function |(t—z¢)(t—z1)|
attains its maximum in [z, z;] at the point ¢ = (z¢o+21)/2, and that maximum
is (1 — z0)?/4. Hence

t € [zo,z1] = |f(t) —L(t)| <

%(:L‘l — 370)2. (20.4)

10. As an application of this bound, suppose that we want to compute cheap
and dirty sines by storing values of the sine function at equally spaced points
and using linear interpolation to compute intermediate values. The question
then arises of how small the spacing h between the points must be to achieve
a prescribed accuracy.

Specifically, suppose we require the approximation to be accurate to 1074.
Since the absolute value of the second derivative of the sine is bounded by one,
we have from (20.4) ,

Isint — £(8)] < 1.
8
Thus we must take h2/8 < 10~ or

h < .01v8 = 0.0283....

Convergence

11. The method just described for approximating the sine uses many inter-
polants over small intervals. Another possibility is to use a single high-order
interpolant to represent the function f over the entire interval of interest. Thus
suppose that for each n = 0, 1, 2, ... we choose n equally spaced points and
let p, interpolate f at these points. If the sequence of polynomials {p}5,
converges uniformly to f, we know there will be an n for which p, will be a
sufficiently accurate approximation.

20. Polynomial Interpolation 151

0.5
0.5

-0.5

-0.5 -1
-5

f=]
w
&
f=]
w

)
=1
[
=1
[

Figure 20.1. Equally spaced interpolation.

12. Unfortunately, equally spaced interpolation can diverge. The following
example is due to Runge. Consider the function

1

f(t):m

on the interval [—5,5]. Figure 20.1 exhibits plots of the function and its in-
terpolant for n = 4, 8, 12, and 16. You can see that the interpolants are
diverging at the ends of the intervals, an observation which can be established
mathematically.

Chebyshev points

13. Although it is not a complete explanation, part of the problem with
Runge’s example is the polynomial w(t) = (t — zo)(t — z1)--- (¢t —), which
appears in the error expression (20.3). Figure 20.2 contains plots of w for
equally spaced points and for a set of interpolation points called Chebyshev
points. The w based on equally spaced points is the one that peaks at the ends
of the interval, just about where the error in the interpolant is worst. On the
other hand, the w based on the Chebyshev points is uniformly small.

14. The Chebyshev points come from an attempt to adjust the interpolation
points to control the size of w. For definiteness, let us consider the interval

152 Afternotes on Numerical Analysis

0.8 4

0.6 N

0.4 N

021 N

-0.21

-0.41

-0.61

-0.81

Figure 20.2. w(t) for equally spaced and Chebyshev points.

[—1,1] and suppose that
7@ <M, -1<t<1.

Then from (20.3),

M
£ = pa(®)] < o7 _max (o))

This bound will be minimized if we choose the interpolating points so that

x| |w ()|

is minimized.
It can be shown

min max_|w(z)| = 27",
w(@)=(z—x0)(z—21)~(z—zn) €[1,1]

and the minimum is achieved when

2(n—1)+1
:I:Z':COS(%’K), 1=0,1,...,n.

These are the Chebyshev points.

20. Polynomial Interpolation 153

n=4 n=8
1 1
08 08
0.6 0.6
0.4 0.4
0.2 0.2
0 0
02 0 5 02 0 5
n=12 n=16
1 1
0.8 0.8
0.6 0.6
04 04
0.2 0.2
o 0 5 o 0 5

Figure 20.3. Chebyshev interpolation.

15. Figure 20.3 shows what happens when 1/(1 + z?) is interpolated at the
Chebyshev points. It appears to be converging satisfactorily.

16. Unfortunately, there are functions for which interpolation at the Chebyshev
points fails to converge. Moreover, better approximations of functions like
1/(1422) can be obtained by other interpolants — e.g., cubic splines. However,
if you have to interpolate a function of modest or high degree by a polynomial,
you should consider basing the interpolation on the Chebyshev points.

e Numerical Integration

155

Lecture 21

Numerical Integration

Numerical Integration

Change of Intervals

The Trapezoidal Rule

The Composite Trapezoidal Rule
Newton—Cotes Formulas

Undetermined Coefficients and Simpson’s Rule

Numerical integration

1. The differential calculus is a science; the integral calculus is an art. Given
a formula for a function—say e™* or e @ it is usually possible to work your
way through to its derivative. The same is not true of the integral. We can

calculate
/ e Tdx

/e*g”2 dz (21.1)

cannot be expressed in terms of the elementary algebraic and transcendental
functions.

easily enough, but

2. Sometimes it is possible to define away the problem. For example the
integral (21.1) is so important in probability and statistics that there is a well-
tabulated error function

2 T
erf(z) = ﬁ/o e ¥ dx,

whose properties have been extensively studied. But this approach is special-
ized and not suitable for problems in which the function to be integrated is
not known in advance.

3. One of the problems with an indefinite integral like (21.1) is that the
solution has to be a formula. The definite integral, on the other hand, is a
number, which in principle can be computed. The process of evaluating a
definite integral of a function from values of the function is called numerical
integration or numerical quadrature.??

22The word “quadrature” refers to finding a square whose area is the same as the area
under a curve.

157

158 Afternotes on Numerical Analysis

Change of intervals

4. A typical quadrature formula is Simpson’s rule:

[i@ s 510+ 21(3) + 250,

Now a rule like this would not be much good if it could only be used to
integrate functions over the interval [0, 1]. Fortunately, by performing a linear
transformation of variables, we can use the rule over an arbitrary interval [a, b].
Since this process is used regularly in numerical integration, we describe it now.

5. The trick is to express = as a linear function of another variable y. The
expression must be such that x = a when y = 0 and z = b when y = 1. This
is a simple linear interpolation problem whose solution is

z=a+ (b—a)y.

It follows that
dx = (b — a)dy.

Hence if we set
9(y) = fla+ (b —a)yl,

we have)

[1@ar=0-a) [o)y

0
6. For Simpson’s rule we have

1

90) = (@), g(3) = F(2

2

), 9(1) = f().
Hence the general form of Simpson’s rule is

[1@ =220 (1@ +as(50) +1m).

7. This technique easily generalizes to arbitrary changes of interval, and we
will silently invoke it whenever necessary.

The trapezoidal rule

8. The simplest quadrature rule in wide use is the trapezoidal rule. Like
Newton’s method, it has both a geometric and an analytic derivation. The
geometric derivation is illustrated in Figure 21.1. The idea is to approximate
the area under the curve y = f(z) from z = 0 to z = h by the area of the
trapezoid ABCD. Now the area of a trapezoid is the product of its base with

21. Numerical Integration 159

C ___—
B
/ fi(h)
£(0)
h
A D

Figure 21.1. The trapezoidal rule.

its average height. In this case the length of the base is h, while the average
height is [f(0) + f(h)]/2. In this way we get the trapezoidal rule

h h
| 1@dz = 3150 + 1. (21.2)

9. The idea behind the analytic derivation is to interpolate f(z) at 0 and h
by a linear polynomial ¢(z) and take f(? £(z) dr as an approximation to the
integral of f(z). The interpolant is

and an easy integration shows that foh £(z)dz is the same as the right-hand
side of (21.2).

10. An advantage of the analytic approach is that it leads directly to an error
formula. From the theory of polynomial interpolation (see §20.4) we know that

Flo) — tle) = e),

where &, € [0,h] and f"({;) is a continuous function of z. If Tj(f) denotes
the right-hand side of (21.2), then

/Ohf(w)dm—Th /[f —{(x 2/ F'(E)a(z — h) de. (21.3)

Now the function z(z — h) is nonpositive on [0, h]. Hence by the mean value
theorem for integrals, for some u and n = &, both in [0, k], we have

/f)dz — Th(f) = fHZ()/Oa:(x—h)da:: fl;(Z)h?’ (21.4)

160 Afternotes on Numerical Analysis

11. The error formula (21.4) shows that if f”(z) is not large on [0,h] and h
is small, the trapezoidal rule gives a good approximation to the integral. For
example if |f”(z)] < 1 and h = 1072, the error in the trapezoidal rule is less
than 1077.

The composite trapezoidal rule

12. The trapezoidal rule cannot be expected to give accurate results over a
large interval. However, by summing the results of many applications of the
trapezoidal rule over smaller intervals, we can obtain an accurate approxima-
tion to the integral over any interval [a, b].

13. We begin by dividing [a, b] into n equal intervals by the points
a=x9 <11 < < ZTp_1<zTp=~=.

Specifically, if
b—a

n

b=

is the common length of the intervals, then
z; = a + th, 1=0,1,...,n

Next we approximate f; ' | f(z) dz by the trapezoidal rule:

[r@ o= L) + @l

i—1

Finally, we sum these individual approximations to get the approximation

[f@yae %Z Fzion) +).

After some rearranging, this sum becomes

/abf(x) de e h (f(;o)

This formula is called the composite trapezoidal rule.?

(3;1) 4+t f($n—1) + f(;cn)))

14. We can also derive an error formula for the composite trapezoidal rule.
Let CTx(f) denote the approximation produced by the composite trapezoidal
rule. Then from the error formula (21.4),

b // (b_a) - "
| 1@ da—cits Zf =S),

i=1

2 Because the composite rule is used far more often than the simple rule, people often drop
the qualification “composite” and simply call it the trapezoidal rule.

21. Numerical Integration 161

where 7; € [zi—1,7;]. Now the factor 1 37, f”(n;) is just the arithmetic mean
of the numbers f”(n;). Hence it lies between the largest and the smallest of
these numbers, and it follows from the intermediate value theorem that there
is an 7 € [a, b] such that f"(n) = %Ez 1" (n;). Putting all this together, we get

the following result.

Let CTx(f) denote the approximation produced by the composite
trapezoidal rule applied to f on [a,b]. Then

(b-a)f"m) .

[r@yaz —omyp) = L7

15. This is strong stuff. It says that we can make the approximate integral
as accurate as we want simply by adding more points (compare this with
polynomial interpolation where convergence cannot be guaranteed). Moreover,
because the error decreases as h?, we get twice the bang out of our added points.
For example, doubling the number of points reduces the error by a factor of
four.

Newton—Cotes formulas

16. From the analytic derivation of the trapezoidal rule, we see that the rule
integrates any linear polynomial exactly. This suggests that we generalize the
trapezoidal rule by requiring that our rule integrate exactly any polynomial
of degree n. Since a polynomial of degree n has n + 1 free parameters, it is
reasonable to look for the approximate integral as a linear combination of the
function evaluated at n + 1 fixed points or abscissas. Such a quadrature rule
is called a Newton—Cotes formula.?*

17. Let zg, 71, ..., T, be points in the interval [a,b].2> Then we wish to
determine constants Ag, A1, ..., A,, such that
b
deg(f) <n = / flx)dx = Apzo + A1z + -+ - + Apyy. (21.5)
a
This problem has an elegant solution in terms of Lagrange polynomials.
Let ¢; be the ¢th Lagrange polynomial over xg, 1, ..., . Then
b
A = / ti(z) da (21.6)
a

are the unique coefficients satisfying (21.5).

24Strictly speaking, the abscissas are equally spaced in a Newton-Cotes formula. But no
one is making us be strict.

25In point of fact, the points do not have to lie in the interval, and sometimes they don’t.
But mostly they do.

162 Afternotes on Numerical Analysis

18. To prove the assertion first note that the rule must integrate the ith
Lagrange polynomial. Hence

b n
/ Gi(x) =Y Ajli(z;) = Aili(z;) = Ay,
a j:()

which says that the only possible value for the A; is given by (21.6).
Now let deg(f) < m. Then

Hence
b n b
[titw)de =Y sl [(@) ds =3 Fla) A
@ i=0 a i

which is just (21.5).

Undetermined coefficients and Simpson’s rule

19. Although the expressions (21.6) have a certain elegance, they are difficult
to evaluate. An alternative for low-order formulas is to use the exactness
property (21.5) to write down a system of equations for the coefficients, a
technique known as the method of undetermined coefficients.

20. We will illustrate the technique with a three-point formula over the interval

[0,1] based on the points 0, %, and 1. First note that the exactness property

requires that the rule integrate the function that is identically one. In other
words,

1
1A0+1A1+1A2:/ ldx =1.
0
The rule must also integrate the function z, which gives
1 1 1
0-A0+—-A1+1-A2=/ rdr = —.
2 0 2
Finally, the rule must integrate the function z?. This gives a third equation
1 L, 1
0-A0+—-A1+1-A2:/ 2ds = ;.
4 0 3
The solution of these three equations is
1
Ag= Ay ==

6

and

2
Alzg.

21. Numerical Integration 163

Thus our rule is

[@de= g0+ 21(2) + s,

which is just Simpson’s rule.

Lecture 22

Numerical Integration

The Composite Simpson Rule
Errors in Simpson’s Rule
Treatment of Singularities
Gaussian Quadrature: The Idea

The Composite Simpson rule

1. There is a composite version of Simpson’s rule for an interval [a,b]. To
derive it, let

and
z; = a + ih, 1=0,1,...,n.

For brevity set
fi = f(i).
Then by Simpson’s rule
Tito h
/w fz)dz = 5(fi+4fi+l+fi+2)-

i

2. We now wish to approximate the integral of f over [a,b] by summing the
results of Simpson’s rule over [z;, z;2]. However, each application of Simpson’s
rule involves two of the intervals [z;,z;11]. Thus the total number of intervals
must be even. For the moment, therefore, we will assume that n is even.

3. The summation can be written as follows:

3 [P f(x) dz = fo + 4f1 + fo
+fo+4fs+ fat

+fn—4 +4fn—3 + fn—2
+fn—2 +4fn—1 +fn-

This sum telescopes into

b
/ f(z)dz = g(fo+4f1+2f2+4f3+2f4+---+2fn_2+4fn_1+fn), (22.1)

which is the composite Simpson rule.

4. Here is a little fragment of code that computes the sum (22.1). As above
we assume that n is an even, positive integer.

165

166 Afternotes on Numerical Analysis

simp = f[0] + 4xf[1] + f[n];
for (i=2; i<=n-2; i=i+2)

simp = 2xf[i] + 4*f[i+1];
simp = h*simp/3;

5. When n is odd, we have an extra interval [z,_1,%,]| over which we must
integrate f. There are three possibilities.

First, we can use the trapezoidal rule to integrate over the interval. The
problem with this solution is that the error in the trapezoidal rule is too big,
and as h decreases it will dominate the entire sum.

Second, we can evaluate f at

Tp—1+ Tp
X 1 = —

and approximate the integral over [z,_1,z,] by

S (ut + 45,y fo)

This solution works quite well. However, it has the drawback that it is not
suitable for tabulated data, where additional function values are unobtainable.
A third option is to concoct a Newton—Cotes-type formula of the form

/zn f(.’E) dz = AOfn—Q + Alfn—l + Aan

n—1

and use it to integrate over the extra interval. The formula can be easily
derived by the method of undetermined coefficients. It is sometimes called the
half-simp or semi-simp rule.

Errors in Simpson’s rule

6. It is more difficult to derive an error formula for Simpson’s rule than for
the trapezoidal rule. In the error formula for the trapezoidal rule (see the
right-hand side of (21.3)) the polynomial z(z — h) does not change sign on
the interval [0, h]. This means that we can invoke the mean value theorem for
integrals to simplify the error formula. For Simpson’s rule the corresponding
polynomial z(z — h)(z — 2h) does change sign, and hence different techniques
are required to get an error formula. Since these techniques are best studied
in a general setting, we will just set down the error formula for Simpson’s rule
over the interval [a, b]:

[a2 (1@ + a7 (C) 4 rm) = - 0, (29)

2 2880

where £ € [a, b].

22. Numerical Integration 167

7. The presence of the factor f(¥)(£) on the right-hand side of (22.2) implies
that the error vanishes when f is a cubic: Although Simpson’s rule was derived
to be exact for quadratics, it is also exact for cubics. This is no coincidence,
as we shall see when we come to treat Gaussian quadrature.

8. The error formula for the composite Simpson rule can be obtained from
(22.2) in the same way as we derived the error formula for the composite trape-
zoidal rule. If CSy(f) denotes the result of applying the composite Simpson
rule to f over the interval [a, b], then

(b—a)fM(¢)

h4
180 ’

/abf(w) dz — CS(f) =
where ¢ € [a, b].

Treatment of singularities

9. It sometimes happens that one has to integrate a function with a singularity.
For example, if

when z is near zero, then fol f(x) dx exists. However, we cannot use the trape-
zoidal rule or Simpson’s rule to evaluate the integral because f(0) is undefined.

Of course one can try to calculate the integral by a Newton—Cotes formula
based on points that exclude zero; e.g., g = i and x1 = %. However, we will
still not obtain very good results, since f is not at all linear on [0, 1]. A better

approach is to incorporate the singularity into the quadrature rule itself.

10. First define
g9(z) = Vzf(z)-

Then g(x) = ¢ when z is near zero, so that g is well behaved. Thus we should
seek a rule that evaluates the integral

1 1
/ g(z)x 2 dr,
0

where g is a well-behaved function on [0, 1]. The function z72 is called a weight
function because it assigns a weight or degree of importance to each value of
the function g.

11. We will use the method of undetermined coefficients to determine a quadra-
ture rule based on the points zg = % and z1 = %. Taking g(z) = 1, we get the
following equation for the coefficients Ag and A;:

1
/ 1'.’17_%d$:2:A()+A1.
0

168 Afternotes on Numerical Analysis

Taking g(z) = z, we get a second equation:

1 1 2 1 3
cxidr =2 = A+ A
/Oxxzm 3 40—I—41

Solving these equations, we get Ag = g and A1 = % Hence our formula is

/01 g(x)wié dr = gg(i) + ;g(%)

12. In transforming this formula to another interval, say [0, h], care must be
taken to transform the weighting function properly. For example, if we wish
to evaluate

h 1
/ g(z)s~ % da,
0

we make the transformation =z = hy, which gives

/Oh g(a:)xié dz = \/E/Ol g(hm)af% dz.

Owing to the weight function x_%, the transformed integral is multiplied by

Vh, rather than k as in the unweighted case.

13. The effectiveness of such a transformation can be seen by comparing it
with an unweighted Newton—Cotes formula on the same points. The formula

[s (5(3) +1(5))

The following MATLAB code compares the results of the two formulas for h =
0.1 applied to the function

is easily seen to be

COS T

2V

—+zsinz,

whose integral is

VT cos .

x = .025;

f0 = .b*cos(x)/sqrt(x) - sqrt(x)*sin(x);
g0 = .b*cos(x) - x*sin(x);

x = .075;

f1 = .b*cos(x)/sqrt(x) - sqrt(x)*sin(x);
gl = .b*cos(x) - x*sin(x);

[.06%(£f0+f1), sqrt(.1)*(5*%g0/3 + g1/3), sqrt(.1)*cos(.1)]

The true value of the integral is 0.3146. The Newton—Cotes approximation is
0.2479. The weighted approximation is 0.3151 —a great improvement.

22. Numerical Integration 169

Gaussian quadrature: The idea

14. We have observed that the coefficients A; in the integration rule

/ab f(z)dz = Ao f(xo) + Arf(z1) + -+ + Anf(zn)

represent n + 1 degrees of freedom that we can use to make the rule exact for
polynomials of degree n or less. The key idea behind Gaussian quadrature is
that the abscissas xg, x1, - .., T, represent another n + 1 degrees of freedom,
which can be used to extend the exactness of the rule to polynomials of degree
2n + 1.

15. Unfortunately, any attempt to derive a Gaussian quadrature rule by the
method of undetermined coefficients (and abscissas) must come to grips with
the fact that the resulting equations are nonlinear. For example, when n =1
and [a,b] = [0, 1], the equations obtained by requiring the rule to integrate 1,

z, 2, and 23 are

Ao+ A
zoAo + 14
3 Ao + 234,
x%Ao + wi’Al

= Wl Nl

Although this tangle of equations can be simplified, in general the approach
leads to ill-conditioned systems. As an alternative, we will do as Gauss did and
approach the problem through the theory of orthogonal polynomials, a theory
that has wide applicability in its own right.

16. But first let’s digress a bit and consider a special case. Rather than freeing
all the abscissas, we could fix n — 1 of them, allowing only one to be free. For
example, to get a three-point rule that integrates cubics, we might take o = 0
and z9 = 1, leaving z; to be determined. This leads to the equations

1=A4+ A1+ A4
z= 1A + Ao
% = T2 A1 + Ag
% = xi’Al + As

When these equations are solved, the result is Simpson’s rule. Thus the un-
expected accuracy of Simpson’s rule can be explained by the fact that it is
actually a constrained Gaussian quadrature formula.

Lecture 23

Numerical Integration

Gaussian Quadrature: The Setting
Orthogonal Polynomials

Existence

Zeros of Orthogonal Polynomials
Gaussian Quadrature

Error and Convergence

Examples

Gaussian quadrature: The setting

1. The Gauss formula we will actually derive has the form

[$@po@)do = dof(a) + Arflen) 4+ Au)

where w(z) is a weight function that is greater than zero on the interval [a, b].

2. The incorporation of a weight function creates no complications in the
theory. However, it makes our integrals, which are already too long, even more
cumbersome. Since the interval [a,b] and the weight w(z) do not change, we
will suppress them along with the variable of integration and write

1= [1@ .

3. Regarded as an operator on functions, [is linear. That is, [af = of f and
J(f+9) = Jf+ [g. We will make extensive use of linearity in what follows.

Orthogonal polynomials

4. Two functions f and g are said to be orthogonal if

[fg=0.

The term “orthogonal” derives from the fact that the integral [fg can be
regarded as an inner product of f and g. Thus two polynomials are orthogonal
if their inner product is zero, which is the usual definition of orthogonality in
R".

5. A sequence of orthogonal polynomials is a sequence {p;}32, of polynomials
with deg(p;) = i such that

i#j = [pipj=0. (23.1)

171

172 Afternotes on Numerical Analysis

Since orthogonality is not altered by multiplication by a nonzero constant, we
may normalize the polynomial p; so that the coefficient of z* is one: i.e.,

pi(z) = o' + @iz’ 4 + ai.

Such a polynomial is said to be monic.

6. Our immediate goal is to establish the existence of orthogonal polynomials.
Although we could, in principle, determine the coefficients a;; of p; in the
natural basis by using the orthogonality conditions (23.1), we get better results
by expressing p,,+1 in terms of lower-order orthogonal polynomials. To do this
we need the following general result.

Let {pi}$2, be a sequence of polynomials such that p; is exactly of
degree i. If
q(z) = anz™ + an_12" "t + - + ag, (23.2)

then ¢ can be written uniquely in the form

q = bupp +by_1pp—1+--- + bopo. (23.3)

7. In establishing this result, we may assume that the polynomials p; are
monic. The proof is by induction. For n = 0, we have

q(z) = ap = ag - 1 = agpo(z).

Hence we must have by = ay.

Now assume that ¢ has the form (23.2). Since p,, is the only polynomial in
the sequence p,,, pn—1, - - ., po that contains ™ and since p,, is monic, it follows
that we must have b, = a,. Then the polynomial ¢ — a,p, is of degree n — 1.
Hence by the induction hypothesis, it can be expressed uniquely in the form

q — QpPn = bn—lpn—l + 4 bOpO,

which establishes the result.

8. A consequence of this result is the following.

The polynomial p,; is orthogonal to any polynomial q of degree n
or less.

For from (23.3) it follows that

JPn+19 = bp [Pry1pn + -+ + bo Pnt2po = 0,

the last equality following from the orthogonality of the polynomials p;.

23. Numerical Integration 173

Existence

9. To establish the existence of orthogonal polynomials, we begin by computing
the first two. Since pg is monic and of degree zero,

Since p; is monic and of degree one, it must have the form
pi(z) =z — .
To determine o, we use orthogonality:
0= [pipo=J(z—a1) 1= fz—a [l

Since the function 1 is positive in the interval of integration, [1 > 0, and it
follows that
_Jz

-7

10. In general we will seek p,41 in the form

aq

Pntl = TPn — Qni1Pn — Buf1Pn—1 — Yni1Pn—2 — .

As in the construction of p;, we use orthogonality to determine the coefficients

On+1, IBWH-D Tn+1ls ----
To determine a1, write

0= fpn-l—lpn = fmpnpn - an-l—lfpnpn - ﬁn+1fpn—1pn - '7n+1fpn—2pn —
By orthogonality, 0 = [pn—1pn = [Pn—2pn = ---. Hence
fmpi - O‘n-l—lfpi = 0.
Since [p2 > 0, we may solve this equation to get

2
zp

Apt1 = fprH .
n

For 41, write

0= fpn—klpnfl = f-z'pnpnfl - an+1fpnpn71
- ,Bn—}—lfpn—lpn—l - 'Yn—{—lfpn—an—l —

Dropping terms that are zero because of orthogonality, we get

Jzpupn—1 = Bas1[P2_1 =0

174 Afternotes on Numerical Analysis

or
Byt = JTpnpn—1
g = enenel
fp%—l

11. The formulas for the remaining coefficients are similar to the formula for

Br+1; €.g.,

o fxpnpn—Q
Tn+l = —F 5 -
P2

However, there is a surprise here. The numerator [zp,p,_2 can be written in

the form [zp,_op,. Since zp,_o is of degree n — 1 it is orthogonal to p,; i.e.,

Jxpn—opn—1 = 0. Hence yx41 = 0, and likewise the coefficients of p,_3, pp—_a,
. are zero.

12. To summarize:

The orthogonal polynomials can be generated by the following re-

currence:

Do = 17

pP1 =T — Qq,

Pn4+1 = 2ZPp — Cp41Pn — ﬂn-}—lpnfla n=12,...,
where

Jzp2 JZPppn—1
Qpil = and fpi1=—55—.
n+ fp% n-+ fpifl

The first two equations in the recurrence merely start things off. The
right-hand side of the third equation contains three terms and for that reason
is called the three-term recurrence for the orthogonal polynomials.

Zeros of orthogonal polynomials

13. Tt will turn out that the abscissas of our Gaussian quadrature formula will
be the zeros of p,11. We will now show that

The zeros of p,41 are real, simple, and lie in the interval [a, b].

14. Let zg, z1, - .., z be the zeros of odd multiplicity of p,+1in [a, b]; i.e,, o,
Z1i, .., Tk are the points at which p,41 changes sign in [a, b]. If k = n, we are
through, since the z; are the n + 1 zeros of p,y1.

Suppose then that £ < n and consider the polynomial

q(z) = (z — zo)(z — 21) -~ (x — mp).
Since deg(q) = k + 1 < n+ 1, by orthogonality

JPni19 =0.

23. Numerical Integration 175

On the other hand p,+1(z)g(z) cannot change sign on [a, b] — each sign change
in pp41(z) is cancelled by a corresponding sign change in ¢(z). It follows that

Pnt1g # 0,

which is a contradiction.

Gaussian quadrature

15. The Gaussian quadrature formula is obtained by constructing a Newton—
Cotes formula on the zeros of the orthogonal polynomial p,, 1.

Let zg, x1, ..., z, be the zeros of the orthogonal polynomial p,;
and set
Ai= [, i=0,1,...,n,

where ¢; is the ith Lagrange polynomial over xgy, x1, ..., ©,. For
any function f let

Gnf = Aof(xo) + Arf(z1) +--- + Anf(zn).

Then
deg(f) <2n+1 = [= Guf.

16. To establish this result, first note that by construction the integration
formula G, f is exact for polynomials of degree less than or equal to n (see
§21.17).

Now let deg(f) < 2n + 1. Divide f by p,41 to get

f = Pn+14 + T, deg(q)a deg(T) < n. (234)
Then

Gnf = X Aif(z:)
= >, Ai[pnsi(zi)g(zi) +r(z;)] by (23.4)

= ¥ Air(a) because py 41 (z:) = 0

= Gpr

= [r because G,, is exact for deg(r) <n
= [(pn+19+T) because [p,11g =0 for deg(q) <n
= [f by (23.4).

Quod erat demonstrandum.

17. An important corollary of these results is that the coefficients A; are
positive. To see this note that

0 ifi#j,

176 Afternotes on Numerical Analysis

Since #2(z) > 0 and deg(¢?) = 2n,

0< [=Gnll = Al (z)) = A;.
J

18. Since Ag+---+A4, = [1, no coefficient can be larger than [1. Consequently,
we cannot have a situation in which large coefficients create large intermediate
results that suffer cancellation when they are added.

Error and convergence

19. Gaussian quadrature has error formulas similar to the ones for Newton—
Cotes formulas. Specifically

Feng)

2
(27’L + 2)| fpn—Ha

ff_an:

where ¢ € [a, b].
20. A consequence of the positivity of the coefficients A; is that Gaussian
quadrature converges for any continuous function; that is,

f continuous = nlgrolo Gnf=[Ff.

The proof—it is a good exercise in elementary analysis—is based on the
Weierstrass approximation theorem, which says that for any continuous func-
tion f there is a sequence of polynomials that converges uniformly to f.

Examples

21. Particular Gauss formulas arise from particular choices of the interval [a, b]
and the weight function w(z). The workhorse is Gauss—Legendre quadrature,?
in which [a,b] = [-1,1] and w(z) = 1, so that the formula approximates the
integral

1
/ f(z)dz.
-1
The corresponding orthogonal polynomials are called Legendre polynomials.

22. If we take [a,b] = [0,00] and w(z) = e, we get a formula to approximate

/Ooo f(x)e ™ dx.

This is Gauss—Laguerre quadrature.

26 Curious bedfellows! Gauss and Legendre became involved in a famous priority dispute
over the invention of least squares, and neither would enjoy seeing their names coupled this
way.

23. Numerical Integration 177

23. If we take [a, b] = [~00, 0] and w(z) = %", we get a formula to approx-
imate

/Oo f(a:)e_””2 dzx.

—0o0

This is Gauss—Hermite quadrature.

24. There are many other Gauss formulas suitable for special purposes. Most
mathematical handbooks have tables of the abscissas and coefficients. The
automatic generation of Gauss formulas is an interesting subject in its own
right.

e Numerical Differentiation

179

Lecture 24

Numerical Differentiation

Numerical Differentiation and Integration
Formulas from Power Series
Limitations

Numerical differentiation and integration

1. We have already noted that formulas are easier to differentiate than to
integrate. When it comes to numerics the opposite is true. The graphs in
Figure 24.1 suggest why.

The function of interest is represented by the straight line. The vertical
bars represent the values of the function with a little error thrown in. The
dashed line is the resulting piecewise linear approximation, and the area under
it is the approximate integral generated by the composite trapezoidal rule.

It is clear from the figure that the errors in the individual points tend
to wash out in the integral as the dashed line oscillates above and below the
solid line. On the other hand, if we approximate the derivative by the slope
of the dashed line between consecutive points, the results vary widely. In two
instances the slope is negative!

At the end of this lecture we will see why numerical differentiation is by its
nature a tricky process, but first let us derive some differentiation formulas.

Figure 24.1. A straight line.

181

182 Afternotes on Numerical Analysis

Formulas from power series

2. From elementary calculus we know that

f(z) = f(“h})l_f(””) + O(h?). (24.1)

This suggests that we attempt to approximate the derivatives of f as a linear
combination of values of f near the point z. For definiteness, we will work
with the points f(z — h), f(x), and f(z + h), where h is presumed small.

3. We begin by writing the Taylor expansion of f(z + h) and f(z — h) about
z.

h? h3 ht
fx+h)=f(z)+hf'(z)+ ?f"(:v) + Ff"'(:v) + ﬂf(@(:v) I

_ ! h? " h " h* (4)
f(= h) = f(z) = bf!(s) + ") = 1) + 57 SO @) + -

To derive a formula like (24.1), we take a linear combination of these three
values that annihilates f(x) on the right, leaving f'(z) as its leading term. In
the display below, the coefficients of the combination appear before the colons,
and the result appears below the line.

Lf@an) =@+ hf @)+ e
—1: f(x) = f(z))
0: f(z—h) = f(z) —hf'(z) + %f”(n)

Fla+ 1)~ f() B @)+ @)

Note that we have replaced terms in A% by corresponding remainder terms.
Dividing by h, we obtain the formula

flz+h)=f(z) h
L - Ef (5)3 §E [I,IE-f-h].

(=) =

This formula is called a forward-difference approximation to the derivative
because it looks forward along the z-axis to get an approximation to f'(z).

4. A linear combination of f(x — h), f(z), and f(x + h) has three degrees of
freedom. In deriving the forward-difference formula, we used only two of them.
By using all three, we not only can eliminate f(z), but we can eliminate the
terms in h2.

Specifically,

24. Numerical Differentiation 183

L f@+h) = f@) + 1 (@) + @)+ e
0: /(@) = i(@) 2 3
1 fl@—h) = f@) ') + ") - e
(iR fe_me 3@ e 1)

Note that the error term consists of two evaluations of f”/, one at & € [z, z+h]
from truncating the series for f(z + h) and the other at £_ € [z — h,z] from
truncating the series for f(z —h). If f"”" is continuous, the average of these two
values can be written as f"'(£), where £ € [z — h,z + h]. Hence we have the
central-difference formula

x — fz - 2
Py = TEAD_TEZH) W) eefp—natn

5. Since the error in the central-difference formula is of order h2, it is ultimately
more accurate than a forward-difference scheme. And on the face of it, both
require two function evaluations, so that it is no less economical. However, in
many applications we will be given f(z) along with . When this happens,
a forward-difference formula requires only one additional function evaluation,
compared with two for a central-difference formula.

6. To get a formula for the second derivative, we choose the coeflicients to
pick off the first two terms of the Taylor expansion:

1 fa+) = @)+ hf @)+ @)+)+ e
~2: f(a) ~ f() 2 3 4
1: fla+h) = fl@)— hf'@) + 2 @) = @) + e
2 6 24
4 (r(4) (4)
flz+h) = 2f(z) + fla — h) = W f" () T C St S
where {4 € [z,z + h] and £_ € [z,z — h]. It follows that
" +h) -2 + f(zx—h) A2
friy = LEAN 2D TICZN W, ceppnatn

7. The three formulas derived above are workhorses that are put to service
in many applications. However, the technique is quite flexible and can be
used to derive formulas for special occasions. For instance, if we want an
approximation to f'(z) in terms of f(x), f(z +h), and f(z + 2h), we form the
following combination:

184 Afternotes on Numerical Analysis

~3: f(@) = f() 2 3
4 f(a+h) = f@) +hf@) 5 f @) +)
3
1 f@+h) = F(@)+ 2hf' (@) + 27 "(@) + 21 (62)
~3f() +4f @+ h) ~ flotom) = 2hf()+) -)
Hence
—3f(z) +4f(x+h) — f(z+2h) | h?
f’(.l?) _ f(l') f($2h) f(l') + ?[2]0///(52) _ f”’(&)]-

The error term does not depend on a single value of f"’; however, if h is
small, it is approximately

h2 mn
?f (z).

8. The technique just described has much in common with the method of
undetermined coefficients for finding integration rules. There are other, more
systematic ways of deriving formulas to approximate derivatives. But this one
is easy to remember if you are stranded on a desert island without a textbook.

Limitations

9. As we indicated at the beginning of this lecture, errors in the values of f
can cause inaccuracies in the computed derivatives. In fact the errors do more:
they place a limit on the accuracy to which a given formula can compute
derivatives.

10. To see how this comes about, consider the forward-difference formula

fla+h) @) W

: > 1(0)

D(f) =

where D(f) denotes the operation of differentiating f at z. If we define the

operator Dy, by
fl@+h) - f(z)

Dy (f) =

h 7
then the error in the forward-difference approximation is
h’ "
Di(f) = D(f) = 5 ().

In particular, if
<M

24. Numerical Differentiation 185

for all ¢ in the region of interest, then
M
[Da(f) = D) < b (24.2)

Thus the error goes to zero with h, and we can make the approximation Dy
as accurate as we like by taking h small enough.

11. In practice, however, we do not evaluate f(¢), but

F@t) = f(t) +e(t),

where e(t) represents the error in computing f(t). Since Dy, is a linear operator,
it follows that

Dp(f) — Da(f) = Dnle).
In particular, if we know that

le(t)] < e
in the region of interest, then
le(t + h) — e(t)] < 2¢
h ~ h
Combining this inequality with (24.2), we find that the error in what we actu-
ally compute is

|Dh(f) — Di(f)| =

D47~ D()| < 24 T,
12. To the extent that this bound is realistic, it says that there is a limit
on how accurately we can approximate derivatives by the forward-difference
formula. For large h the error formula term AMh/2 dominates, while for small
h the term 2¢/h dominates. The minimum occurs approximately when they
are equal, that is, when Mh/2 = 2¢/h, or
€

At this point the error bound is
2VeM.

For example, if € equals the rounding unit ey and M = 1, then the mini-
mum error is 2,/éy. In other words, we cannot expect more than half machine
precision in such a forward difference.

13. To illustrate this point, the MATLAB code
for i=1:14,
x(i) = (sin(pi/3.2+10°(-1))-sin(pi/3.2))/10"(-1);
y(i) = x(i) - cos(pi/3.2);
end

186 Afternotes on Numerical Analysis

uses forward differencing to compute the derivative of sin(n/3.2) with h =
1071, ..., 107™. The array y contains the error in these approximations.
Here is the output.

T y
0.51310589790214 —0.04246433511746
0.55140366014496 —0.00416657287465
0.55515440565301 —0.00041582736659
0.55552865861230 —0.00004157440730
0.55556607565510 —0.00000415736450
0.55556981726212 —0.00000041575748
0.55557019096319 —0.00000004205641

0.55557023426189
0.55557025646635

0.00000000124229
0.00000002344675

0.55557003442175 —0.00000019859785
0.55556670375267 —0.00000352926693
0.55555560152243 —0.00001463149717

The error decreases until h = 10~ and then increases. Since ey is 1016, this
is in rough agreement with our analysis.

14. Tt is worth noting that if you turn the output sideways, the nonzero digits
of y plot a graph of the logarithm of the error. The slope is the same going
down and coming up, again as predicted by our analysis.

15. It is important not to get an exaggerated fear of numerical differentiation.
It is an inherently sensitive procedure. But as the above example shows, we
can often get a good many digits of accuracy before it breaks down, and this
accuracy is often sufficient for the purposes at hand.

Bibliogaphy

Introduction
References

Introduction

1. The following references fall into three classes. The first consists of ele-
mentary books on numerical analysis and programming. The number of such
books is legion, and I have listed far less than a tithe. The second class consists
of books treating the individual topics in these notes. They are a good source
of additional references. I have generally avoided advanced treatises (hence the
absence of Wilkinson’s magisterial Algebraic Eigenvalue Problem). The third
class consists of books on packages of programs, principally from numerical
linear algebra. They illustrate how things are done by people who know how
to do them.

2. No bibliography in numerical analysis would be complete without referenc-
ing Netlib, an extensive collection of numerical programs available through the
Internet. Its URL is

http://www.netlib.org
The Guide to Available Mathematical Software (GAMS) at
http://gams.nist.gov

contains pointers to additional programs and packages. Be warned that the
preferred way to access the Internet changes frequently, and by the time you
read this you may have to find another way to access Netlib or GAMS.

References

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen.
LAPACK Users’ Guide. STAM, Philadelphia, second edition, 1995.

K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley, New
York, 1978.

A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadel-
phia, 1994.

R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.

T. Coleman and C. Van Loan. Handbook for Matriz Computations. SIAM
Publications, Philadelphia, 1988.

187

188 Afternotes on Numerical Analysis

S. D. Conte and C. de Boor. FElementary Numerical Analysis: An Algorithmic
Approach. McGraw—Hill, New York, third edition, 1980.

Germund Dahlquist and Ake Bjorck. Numerical Methods. Prentice-Hall,
Englewood Cliffs, New Jersey, 1974.

B. N. Datta. Numerical Linear Algebra and Applications. Brooks/Cole, Pacific
Grove, California, 1995.

P. J. Davis. Interpolation and Approrimation. Blaisdell, New York, 1961.
Reprinted by Dover, New York, 1975.

P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic
Press, New York, 1967.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Prentice-Hall, Englewook Cliffs, New
Jersey, 1983.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK
User’s Guide. SIAM, Philadelphia, 1979.

L. Eldén and L. Wittmeyer-Koch. Numerical Analysis: An Introduction.
Academic Press, New York, 1993.

G. Evans. Practical Numerical Integration. Wiley, New York, 1990.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, N.J., 1977.

C.-E. Froberg. Introduction to Numerical Analysis. Adison—Wesley, Reading,
Massachusetts, 1969.

G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins
University Press, Baltimore, Maryland, 2nd edition, 1989.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1995.

A. S. Householder. The Numerical Treatment of a Single Nonlinear Equation.
McGraw-Hill, New York, 1970.

E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley,
New York, 1966.

D. Kahaner, S. Nash, and C. Moler. Numerical Methods and Software. Pren-
tise Hall, Englewood Cliffs, New Jersey, 1988.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall, Englewood Cliffs, New Jersey, second edition, 1988.

D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific
Computing. Brooks/Cole, Pacific Grove, CA, 1991.

Bibliography 189

C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice
Hall, Englewood Cliffs, New Jersey, 1974.

M. J. Maron and R. J. Lopez. Numerical Analysis: A Practical Approach.
Wadsworth, Belmont, California, third edition, 1991.

C. Moler, J. Little, and S. Bangert. Pro-Matlab User’s Guide. The Math
Works, Shereborn, MA, 1987.

J. M. Ortega. Numerical Analysis: A Second Course. Academic Press, New
York, 1972.

P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood Cliffs,
New Jersey, 1974.

G. W. Stewart. Introduction to Matriz Computations. Academic Press, New
York, 1973.

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag,
New York, second edition, 1993.

D. S. Watkins. Fundamentals of Matriz Computations. John Wiley & Sons,
New York, 1991.

J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, New Jersey, 1963.

J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation. Vol. I1
Linear Algebra. Springer, New York, 1971.

Index

Ttalics signify a defining entry. The abbreviation qv (quod vide) means to look
for the topic in question as a main entry. The letter “n” indicates a footnote.

absolute error, 7

as convergence criterion, 7
absolute value

as a norm, 113
astrologer, 150

back substitution, 100
backward error analysis, 55-57,
125, 128
backward stability, 55
Gaussian elimination, 122-124
stable algorithm, 55
sum of n numbers, 53-55
sum of two numbers, 50-51
backward stablity, see backward
error analysis
balanced matrix, 120, 136
base, see floating-point arithmetic
basic linear algebra subprogram,
see BLAS
binary arithmetic, see
floating-point arithmetic
BLAS, 86—88
axpy, 87, 98n, 109
copy, 88
dot, 87
ger, 109
imax, 108
in Gaussian elimination,
108-109
level-three, 109n
level-two, 109
scal, 88, 109
swap, 108
bracket for a root, see nonlinear
equations

C, 69, 80n, 86
storage of arrays, 83, 109
cache memory, 86
cancellation, 61-63, 65, 176
death before cancellation,
61-62, 104
in a sum of three numbers, 61
in ill-conditioned problems, 63
in the quadratic formula, 62
recovery from, 6263, 65
revealing loss of information,
61, 62
characteristic, see floating-point
arithmetic
Chebyshev points, 152
Cholesky algorithm, 90-95, 98
and rounding error, 98
and solution of linear systems,
95
Cholesky decomposition, 90
Cholesky factor, 90
Cholesky factorization, 90
column orientation, 94-95
economization of operations,
92
economization of storage, 92
equivalence of inner and outer
product forms, 98
implementation, 92-95
inner product form, 97-98
operation count, 95, 98
relation to Gaussian
elimination, 91-92
column index, see matrix
column orientation, 84-85, 87, 94,
98n

192

and level-two BLAS, 109
general observations, 86
column vector, see vector
component of a vector, see vector
computer arithmetic, see
floating-point arithmetic
condition
artificial ill-conditioning,
120-121
condition number, 41, 42
condition number with respect
to inversion, 120
generating matrices of known
condition, 129
ill-conditioning, 41, 51, 57, 63,
65
ill-conditioning of
Vandermonde, 136
ill-conditioning revealed by
cancellation, 63
linear system, 119-120, 169
roots of nonlinear equations,
41-42
roots of quadratic equations,
63
sum of n numbers, 57
well-conditioning, 41
condition number, see condition
conformity, see partitioning,
product, sum
constant slope method, 17, 22
as successive-substitution
method, 23
convergence analysis, 18-19
failure, 19
linear convergence, 19
convergence, see convergence of
order p, cubic
convergence, etc.
convergence of order p, 20, 22
and significant figures, 20
limitations for large p, 21

Afternotes on Numerical Analysis

multipoint methods, 33
noninteger orders, 21
two-point methods, 32
Cramer’s rule, 127, 130
compared with Gaussian
elimination, 130-131
cubic convergence, 20, 21

decimal arithmetic, see
floating-point arithmetic
determinant, 77
unsuitability as measure of
singularity, 77-78
diagonal matrix, 71
two-norm of, 127
difference equation, 32
effects of rounding error, 63-65
difference quotient, 27
differentiation
compared with integration,
157, 181
dimension of a vector, see vector
divided difference, 144-146
and error in interpolant, 148
as coefficient of Newton
interpolant, 144
computation, 145-146
operation count, 146
relation to derivative, 149

economist, see astrologer

element of a matrix, see matrix

elementary permutation, 105

error bounds for floating-point
operations, see rounding
error

error function, 157

Euclidean length of a vector, see
norm, two-norm

exponent, see floating-point
arithmetic

fixed point, 21

Index

fixed-point number, 45
floating-point arithmetic
advantage over fixed-point
arithmetic, 45
avoidance of overflow, 47-48
base, 45—46
binary, 46, 49
characteristic, 45n
decimal, 46
double precision, 46
error bounds for floating-point
operations, see rounding
error
exponent exception, 47
floating-point number, 4546
floating-point operations,
49-50
fraction, 45
guard digit, 50
hexadecimal, 46
high relative error in
subtraction, 50
TEEE standard, 46, 47, 50
mantissa, 45n
normalization, 4546
overflow, 47-48, 141, 144
quadruple precision, 46
rounding error, qu
single precision, 46
underflow, 47-48, 141, 144
unnormalized number, 45
FORTRAN, 94
storage of arrays, 84, 109
forward-substitution algorithm, 80
fraction, see floating-point
arithmetic

GAMS, 187
Gauss, C. F., 31, 169, 176n
Gaussian elimination, 92, 98-100,
108, 127, 128, 135
and LU decomposition,
100-102

193

and the Cholesky algorithm,
91-92

back substitution, 100

backward error analysis,
122-124

BLAS in implementation,
108-109

compared with Cramer’s rule,
130-131

compared with
invert-and-multiply, 130

complete pivoting, 105n

exponential growth, 125-126

for Hessenberg matrices,
110-111

for tridiagonal matrices, 111

general assessment, 126

growth factor, 125

implementation, 102

multiplier, 99, 101-102, 122,
123

operation count, 102, 111

partial pivoting, 104-108, 125

pivot, 103

pivoting, 103-108, 111

stability, 125

Gaussian quadrature, 167

convergence, 176

derivation, 175

error formula, 176

Gauss—Hermite quadrature,
177

Gauss—Laguerre quadrature,
176

Gauss—Legendre quadrature,
176

introduction, 169

positivity of coefficients,
175-176

guard digit, see floating-point

arithmetic

Hessenberg matrix, 110

194

and Gaussian elimination,
110-111
hexadecimal arithmetic, see
floating-point arithmetic

identity matrix, see matrix
IEEE standard, see floating-point
arithmetic
ill-conditioning, 123
inner product, 98n, 171
Cholesky algorithm, 97-98
computed by BLAS, 87
integral
definite, 157
indefinite, 157
integration
compared with differentiation,
157, 181
intermediate value theorem, 4
interpolation, 35
interpolatory method, 34
interval bisection, /-6
combined with secant method,
37-40
convergence, 6
implementation, 5-6
inverse matrix, 78, 105, 120n, 130
and linear systems, 78
calculation of, 95
lower triangular matrix, 101
of a product, 78
of a transpose, 78
invert-and-multiply algorithm, see
linear system

Lagrange interpolation, 144
Lagrange polynomials, 137-138,
161

least squares, 89, 176

Legendre, A. M., 176n

linear combination, 75

linear convergence, 19, 20, 22
rate of convergence, 20

Afternotes on Numerical Analysis

linear equations, see linear system
linear fractional method, 34-36
linear independence, 77
linear system, 77, 104
and partial pivoting, 105-108
and relative residual, 128-129
and rounding error, 120
artificial ill-conditioning,
120-121
condition, 119-120
Cramer’s rule, qv
existence of solutions, 77
invert-and-multiply algorithm,
78, 95, 127, 130
lower triangular system,
79-81, 84-85, 90, 97
matrix representation, 72
nonsymmetric system, 98
operation count, qu
perturbation analysis, 116-117
positive-definite system, 89, 95
solution by LU decomposition,
78-79, 89
triangular system, 95
uniqueness of solutions, 77
locality of reference, 83, 85, 86
lower triangular matrix, 79, 79
inverse, 101
product, 101
unit lower triangular matrix,
102
lower triangular system
nonsingularity, 143
LU decomposition, 79, 98, 102,
120n, 123
and Gaussian elimination,
100-102
existence, 103
solution of linear systems,
78-79, 89
with partial pivoting, 106-107

mantissa, see floating-point

Index

arithmetic
MATLAB, 127
matrix, 69
column index, 69
diagonal matrix, qv
element, 69
identity matrix, 71
inverse matrix, qu
lower triangular matrix, qv
nonsingular matrix, qv
normally distributed matrix,
129
operations, see multiplication
by a scalar, sum, product,
transpose
order, 69
orthogonal matrix, qv
partitioning, qu
positive definite matrix, quv
rank-one matrix, qu
represented by upper-case
letters, 70
row index, 69
symmetric matrix, 89
unit lower triangular matrix,
102
upper triangular matrix, 79,
79
Vandermonde matrix, qv
zero matrix, 70
matrix perturbation theory, 116
monic polynomial, 172
Muller’s method, 33-34, 135
multiple zero, 24
behavior of Newton’s method,
24
multiplication by a scalar
and norms, 113
and transposition, 72
matrix, 70
vector, 71
multipoint method, 33, 34, 135

195

rate of convergence, 33

natural basis interpolation,
135-137, 141
evaluation by synthetic
division, 141-142
ill-conditioning of
Vandermonde, 136
Vandermonde matrix, qu
Netlib, 187
Newton interpolation, 142, 144
addition of new points, 144
coefficients as divided
differences, 144
computation of coefficients,
145-146
evaluation by synthetic
division, 142
existence and uniqueness,
143-144
Newton’s method, 9-15, 22, 34
analytic derivation, 10
as confluent case of secant
method, 29
as successive-substitution
method, 23
calculating reciprocals, 11
calculating square roots, 11
convergence analysis, 12-14,
19
convergence to multiple zero,
24
derivative evaluation, 4, 17
divergence, 11
failure, 37
geometric derivation, 9
quadratic convergence, 14, 19,
23
retarded convergence, 14-15,
25
starting values, 15
nonlinear equations, 4
analytic solutions, 4

bracket for a root, 5
condition of roots, see
condition, roots of
nonlinear equations
effects of rounding error, 6
errors in the function, 37,
40-42
existence of solutions, 4, 5
general observations, 3—4
hybrid of secant method and
interval bisection, 37-40
interpolatory method, 33
interval bisection, qv
Muller’s method, qu
multipoint method, qu
Newton’s method, qu
polynomial equations, 25
quadratic formula, qv
quasi-Newton method, 4, 17n,
17, 27
root and zero contrasted, 9
secant method, qu
successive substitutions
method, qv
two-point method, qv
uniqueness of solutions, 4

nonsingular matrix, 78, 90

perturbation of, 117

norm

and orthogonal matrices, 127
column-sum norm, 115
consistency, 114, 116, 127
Euclidean norm, 114
Frobenius norm, 115
infinity-norm, 113-115
Manhattan norm, 114
matrix norm, 114-115
max norm, 114
normwise relative error,
115-116, 117, 120, 128
of a diagonal matrix, 127
of a rank-one matrix, 127

Afternotes on Numerical Analysis

one-norm, 113-115

row-sum norm, 115

triangle inequality, 114

triangle inequality., 113

two-norm, 72, 118-114, 115n,
127-128

vector norm, 113-114

numerical differentiation

central-difference formula, 183

compared with numercial
integration, 181

error analysis, 184—-186

forward-difference formula,
182, 184

second derivative, 183

three-point
backward-difference
formula, 184

numerical integration, 41, 157

and Lagrange polynomials,
161-162

change of intervals, 158

compared with numerical
differentiation, 181

Gauss-Hermite quadrature,
177

Gauss—Laguerre quadrature,
176

Gauss—Legendre quadrature,
176

Gaussian quadrature, qv

Newton—Cotes formulas,
161-162, 166, 167

Simpson’s rule, quv

trapezoidal rule, qu

treatment of singularities,
167-168

undetermined coefficients,
162-163, 167, 169

weight function, 167, 176

numerical quadrature, 157

operation count, 81-82

Index

approximation by integrals,
81, 95
Cholesky algorithm, 95
divided difference, 146
Gaussian elimination, 102
Gaussian elimination for
Hessenberg matrices, 111
Gaussian elimination for
tridiagonal matrices, 111
interpretation and caveats,
81-82
lower triangular system, 81
synthetic division, 142
order of a matrix, see matrix
orthogonal function, 171
orthogonal matrix, 127
and two-norm, 127
random, 129
orthogonal polynomials, 169, 171
existence, 173-174
Legendre polynomials, 176
normalization, 172
orthogonality to polynomials
of lesser degree, 172
reality of roots, 174-175
three-term recurrence, 174
outer product, 97
overflow, see floating-point
arithmetic
overwriting, 92, 93, 102

partitioning, 74, 90
by columns, 74
conformity, 74
matrix operations, 74
paritioned sum, 74
partitioned product, 74
positive-definite matrix, 90
perturbation analysis, 57
linear system, 116-117
sum of n numbers, 57
pivoting, see Gaussian elimination
polynomial

197

bases, 143n, 172
evaluation by synthetic
division, 141-142
monic, 172
number of distinct zeros, 138
polynomial interpolation, 137
approximation to the sine, 150
at Chebyshev points, 151-153
convergence, 150-153, 161
error bounds, 149-150
error in interpolant, 147-149
existence, 137-138
extrapolation and
interpolation, 149-150
failure of convergence, 151, 153
general features, 137
Lagrange interpolation,
137-138, 141
linear interpolation, 149
natural basis interpolation, qv
Newton interpolation, qu
quadratic interpolation,
135-136
Runge’s example, 151
shift of origin, 136
uniqueness, 138-139
Vandermonde matrix, qu
positive-definite matrix, 89
calculation of inverse, 95
nonsingularity, 90
partitioned, 90
without symmetry
requirement, 89n
precision, see floating-point
arithmetic
product, 70
and transposition, 72
associativity, 72
conformity, 71
distributivity, 72
inner product, 72
inverse of, 78

198

matrix, 70-71

matrix-vector, 71, 75

noncommutativity of matrix
product, 72, 74

of partitioned matrices, 74

of triangular matrices, 101

rank-one matrix and a vector,
73

recipe for matrix product, 71

quadratic convergence, 14, 19-20
doubling of significant figures,
14
of Newton’s method, 14, 19
quadratic formula, 61-63
discriminant, 63
revised, 63

rank-one matrix, 73
computing with, 73
storing, 73
two-norm of, 127
reciprocal calculated by Newton’s
method, 11
regression, 89
relative error, 7, 57, 128
and significant figures, 7-8
as convergence criterion, 8
normwise, see norm
and rounding error, 49
relative residual, 128
and stability of linear systems,
128-129
residual, 128
rounding error, 40, 47, 48-49
accumulation, 55, 58-59, 65
adjusted rounding unit, 55
cancellation, qu
chopping, 48-49
computation of the rounding
unit, 49
difference equation, 63—-65
error bounds, 48-49, 59

Afternotes on Numerical Analysis

error bounds for floating-point
operations, 50
general observations, 65-66
in linear systems, 120
inferiority of chopped
arithmetic, 5859
machine epsilon, 49
magnification, 65
and relative error, 49
rounding, 48
rounding unit, 49, 120, 123
statistical analysis, 59
truncation, 48
rounding unit, see rounding error
rounding-error analysis
accuracy of a sum of positive
numbers, 58-59
accuracy of computed sum, 58
backward error analysis, qv
cancellation, qv
Cholesky algorithm, 98
difference equation, 64—65
Gaussian elimination, qu
numerical differentiation,
184-186
simplification of error bounds,
54-55
single error strategy, 65
sum of n numbers, 53-55
sum of two numbers, 50-51
row index, see matrix
row orientation, 83-84, 87, 98n
and level-two BLAS, 109
general observations, 86
row vector, see vector

scalar, 70
as 1 x 1 matrix, 69
multiplication by, 70
represented by lower-case
Latin or Greek letter, 70
secant method, 27, 34
as an interpolatory method, 33

Index

combined with interval
bisection, 37-40
convergence, see two-point
method, 21
failure, 34, 37
geometric derivation, 28
Newton’s method as confluent
case, 29
quasi-Newton method, 17
significant figures
and quadratic convergence, 14
and relative error, 7-8
simple zero, 24
Simpson’s rule, 158
as a partial Gauss quadrature,
169
composite rule, 165-166
derived by undetermined
coefficients, 162-163
error formula, 166
error in composite rule, 167
exact for cubics, 167, 169
half-simp rule, 166
singular matrix, 123
spline interpolant, 153
square root
calculated by Newton’s
method, 11
stable algorithm, 41, 55, 128-129
backward error analysis, qu
dialogue on stability, 55-56
Gaussian elimination, 125
synthetic division, 142
Stewart, G. W., 103
sublinear convergence, 20n
successive substitution method, 21
convergence, 21
geometric interpretation, 21
sum, 70
and transposition, 72
associativity, 72
comformity, 70

199

commutativity, 72
distributivity, 72
matrix, 70
of partitioned matrices, 74
vector, 71
superlinear convergence, 20
not of order p, 21n
two-point methods, 32
symmetric matrix
economization of operations,
92
synthetic division, 141-142
evaluation of Newton
interpolant, 142
operation count, 142
stability, 142

transpose, 69-70, 72
and matrix operations, 72
inverse of, 78
trapezoidal rule, 158-160
analytic derivation, 159
composite rule, 160, 181
error formula, 159-160
error in the composite rule,
160-161
geometric derivation, 158-159
triangle inequality, see norm
tridiagonal matrix, 111
and Gaussian elimination, 111
two-point method, 28
convergence analysis, 29-32
rate of convergence, 32

underflow, see floating-point
arithmetic

Vandermonde matrix, 137, 144
ill-conditioning, 136
nonsingularity, 135, 138

vector, 69
column vector, 69
component, 69

200 Afternotes on Numerical Analysis

dimension, 69
as n X 1 matrix, 69
n-vector, 69
represented by lower-case
Latin letters, 70
row vector, 69, 72
vector operations, see
multiplication by a scalar,
sum, product, transpose
vector supercomputer, 109
virtual memory, 83, 84, 86
page, 83
page hit, 83
page miss, 83, 83-85

Weierstrass approximation
theorem, 176

weight function, 171

Wilkinson, J. H., 37, 110

zero matrix, see matrix
zero of a function, 9

